研究生: |
陳德璋 Chen, Te-Chang |
---|---|
論文名稱: |
利用新穎的晶片操作平台研究微懸浮球共振腔及其共振增強光機現象 A Novel Chip-Scale Operation Platform for Studying Resonance-Enhanced Optomechanics of Colloidal Microsphere Resonators |
指導教授: |
李明昌
Lee, Ming-Chang |
口試委員: |
饒達仁
Yao, Da-Jeng 楊尚達 Yang, Shang-Da 盧彥文 Lu, Yen-Wen 廖顯奎 Liaw, Shien-Kuei |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 微球形光學共振腔 、微液珠 、光機現象 、微粒子操控 |
外文關鍵詞: | optical micro-resonator, microdroplet, optomechanical, particle manipulation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這個研究利用一個整合性的平台在單一晶片上探討膠體微球的光學共振腔行為及其光機現象,這個新穎的設計取代現今最常見利用錐狀光纖作為耦合器的方式,免除需用於移動該光纖的精密機械系統。這個平台利用介電泳力捉取並調控膠體粒子與晶片上光波導間的耦合間隙,而共振腔系統的耦合條件將可經由光波導輸出端的穿透頻譜快速的量測、推算,不論是固態的微球或是微液珠所形成的微共振腔都可以成功的利用這個平台量測,量測的結果也顯示,整個系統具有很高的穩定性,這也將有助於往後與微流體系統整合與應用。另外,我們也成功的利用這個系統量測微油珠的尺寸,在穩定的環境溫度控制下,誤差也可降低至數十個奈米以內,除此之外,我們也將這個平台用於研究共振增強的光機現象,首先,光誘發光梯度力所造成的耦合條件變化很容易的經由輸入光的強度加以調控,我們也發現在某先操作條件下會出現雙穩態的結果,截至目前為止尚未有任何的研究團隊討論這個雙穩態的現象。另外,我們也發現這個光作用力在液態微球赤道面也會造成局部的形變,這也是第一個經由實驗驗證在微弱的輸入光條件下,光機現象可用於非線性調變的結果。
In this study, an integrated operation platform is proposed to study optomechanics of colloidal microsphere resonators on a chip, which solves the issue of difficulty for precisely controlling the coupling between the colloidal microspheres and tapered optical fibers. On this platform, the dielectrophoretic force (DEP) is utilized to capture microsphere resonators and position the microsphere on top of a waveguide for an appropriate optical coupling condition. The coupling condition can be easily and quickly detected through measuring the transmittance of the optical waveguide. This platform can be applied for both solid or liquid microsphere resonators. It shows great measurement stability, and has the potential to be integrated into today's micro-fluid systems as an effective tool for optically probing. In addition, we successfully use this platform to determine the radius of microdroplets with a measurement error down to tens of nanometers, under a consistent ambient temperature. This platform also facilitates the study of resonance-enhanced optomechanics of colloidal microspheres.First, we directly observed an optically induced gradient force and figure out a self-regulation of coupling condition of colloidal microspheres varied by waveguide power. A cavity-enhanced optomechanical bistability of coupling condition was observed, which we believe it was never reported before. Meanwhile, we also observed optically induce local deformation of a spherical microdroplet cavity through our operation platform, and for the first time, we demonstrate nonlinear detuning of the cavity wavelength via the use of tunable laser with low-power excitation.
1. M. Cai, O. Painter and K. J. Vahala, Physical Review Letters, 2000, 85, 74-77.
2. S. M. Spillane, T. J. Kippenberg and K. J. Vahala, Nature, 2002, 415, 621-623.
3. K. Djordjev, S. J. Choi, S. J. Choi and P. D. Dapkus, Ieee Photonics Technology Letters, 2002, 14, 828-830.
4. A. M. Armani and K. J. Vahala, Optics Letters, 2006, 31, 1896-1898.
5. D. K. Armani, T. J. Kippenberg, S. M. Spillane and K. J. Vahala, Nature, 2003, 421, 925-928.
6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus and I. Kim, Science, 1999, 284, 1819-1821.
7. G. S. Solomon, M. Pelton and Y. Yamamoto, Physica Status Solidi a-Applied Research, 2000, 178, 341-344.
8. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton and R. A. Logan, Applied Physics Letters, 1992, 60, 289-291.
9. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi and J. P. Laine, Journal of Lightwave Technology, 1997, 15, 998-1005.
10. D. X. Dai and S. L. He, Journal of the Optical Society of America B-Optical Physics, 2009, 26, 511-516.
11. L. Jin, M. Li and J.-J. He, Optics Letters, 2011, 36, 1128-1130.
12. M. R. Watts, D. C. Trotter, R. W. Young, A. L. Lentine and Ieee, Ultralow Power Silicon Microdisk Modulators and Switches, 2008.
13. F. C. Blom, D. R. vanDijk, H. Hoekstra, A. Driessen and T. J. A. Popma, Applied Physics Letters, 1997, 71, 747-749.
14. M. C. M. Lee and M. C. Wu, Ieee Photonics Technology Letters, 2005, 17, 1034-1036.
15. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss and M. V. Kovalenko, Nature Communications, 2015, 6, 8056.
16. Z. Y. Li and D. Psaltis, Microfluidics and Nanofluidics, 2008, 4, 145-158.
17. S. Yang, V. D. Ta, Y. Wang, R. Chen, T. He, H. V. Demir and H. Sun, Scientific Reports, 2016, 6, 27200.
18. F. Vollmer, S. Arnold and D. Keng, Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20701-20704.
19. J. Wrachtrup and A. Finkler, Nature, 2014, 512, 380-381.
20. M. D. Baaske, M. R. Foreman and F. Vollmer, Nat Nano, 2014, 9, 933-939.
21. J. Zehnpfennig, G. Bahl, M. Tomes and T. Carmon, Optics Express, 2011, 19, 14240-14248.
22. Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou, F. W. Sun, G. C. Guo and C. H. Dong, Nature Photonics, 2016, 10, 657-661.
23. S. Roy, M. Prasad, J. Topolancik and F. Vollmer, Journal of Applied Physics, 2010, 107.
24. D. O'Shea, C. Junge, J. Volz and A. Rauschenbeutel, Physical Review Letters, 2013, 111.
25. T. J. Kippenberg, R. Holzwarth and S. A. Diddams, Science, 2011, 332, 555-559.
26. Y. Zhi, J. Valenta and A. Meldrum, Journal of the Optical Society of America B-Optical Physics, 2013, 30, 3079-3085.
27. F. Vollmer and S. Arnold, Nature Methods, 2008, 5, 591-596.
28. J. Topolancik and F. Vollmer, Biophysical Journal, 2007, 92, 2223-2229.
29. S. Arnold, V. R. Dantham, C. Barbre, B. A. Garetz and X. Fan, Optics Express, 2012, 20, 26147-26159.
30. S. Arnold and S. I. Shopova, in Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation, eds. B. DiBartolo and J. Collins, 2011, DOI: 10.1007/978-90-481-9977-8_11, pp. 237-259.
31. T. Ioppolo, M. Kozhevnikov, V. Stepaniuk, M. V. Ötügen and V. Sheverev, Applied Optics, 2008, 47, 3009-3014.
32. G. Palma, P. Bia, L. Mescia, T. Yano, V. Nazabal, J. Taguchi, A. Moréac and F. Prudenzano, Optical Engineering, 2013, 53, 071805-071805.
33. N. Gaber, M. Malak, X. C. Yuan, K. N. Nguyen, P. Basset, E. Richalot, D. Angelescu and T. Bourouina, Lab on a Chip, 2013, 13, 826-833.
34. A. Jonas, M. Aas, Y. Karadag, S. Manioglu, S. Anand, D. McGloin, H. Bayraktar and A. Kiraz, Lab on a Chip, 2014, 14, 3093-3100.
35. M. Hossein-Zadeh and K. J. Vahala, Optics Express, 2006, 14, 10800-10810.
36. A. Jonas, Y. Karadag, M. Mestre and A. Kiraz, Journal of the Optical Society of America B-Optical Physics, 2012, 29, 3240-3247.
37. Y. Karadag, A. Jonas, I. Kucukkara and A. Kiraz, Optics Letters, 2013, 38, 793-795.
38. S. Maayani, L. L. Martin and T. Carmon, Nature Communications, 2016, 7.
39. N. Riesen, T. Reynolds, A. François, M. R. Henderson and T. M. Monro, Optics Express, 2015, 23, 28896-28904.
40. V. D. Ta, R. Chen, D. M. Nguyen and H. D. Sun, Applied Physics Letters, 2013, 102.
41. B. E. Little, J. P. Laine and H. A. Haus, Journal of Lightwave Technology, 1999, 17, 704-715.
42. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus and J. D. Joannopoulos, IEEE Journal of Quantum Electronics, 1999, 35, 1322-1331.
43. M. Soltani, S. Yegnanarayanan, Q. Li and A. Adibi, IEEE Journal of Quantum Electronics, 2010, 46, 1158-1169.
44. M. Oxborrow, Ieee Transactions on Microwave Theory and Techniques, 2007, 55, 1209-1218.
45. S. L. Chuang, Journal of Lightwave Technology, 1987, 5, 5-15.
46. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani and A. Adibi, Optics Express, 2009, 17, 14543-14551.
47. H. A. Pohl, Journal of Applied Physics, 1951, 22, 869-871.
48. X. J. Wang, X. B. Wang and P. R. C. Gascoyne, Journal of Electrostatics, 1997, 39, 277-295.
49. N. Podoliak, Z. G. Lian, W. H. Loh and P. Horak, Optics Express, 2014, 22, 1065-1076.
50. Y. Chen, D. Li, T. Wang and Y. M. Zheng, Scientific Reports, 2016, 6.
51. P. H. Kaye, K. AlexanderBuckley, E. Hirst, S. Saunders and J. M. Clark, Journal of Geophysical Research-Atmospheres, 1996, 101, 19215-19221.
52. R. M. Sayer, R. D. B. Gatherer, R. J. J. Gilham and J. P. Reid, Physical Chemistry Chemical Physics, 2003, 5, 3732-3739.
53. R. M. Power and J. P. Reid, Reports on Progress in Physics, 2014, 77.
54. E. F. Nichols and G. F. Hull, Physical Review (Series I), 1901, 13, 307-320.
55. A. Ashkin, Physical Review Letters, 1970, 24, 156-&.
56. A. Ashkin, Physical Review Letters, 1978, 40, 729-732.
57. A. Ashkin, Proceedings of the National Academy of Sciences, 1997, 94, 4853-4860.
58. A. Schliesser, P. Del'Haye, N. Nooshi, K. J. Vahala and T. J. Kippenberg, Physical Review Letters, 2006, 97.
59. S. Stenholm, Reviews of Modern Physics, 1986, 58, 699-739.
60. D. Rugar, R. Budakian, H. J. Mamin and B. W. Chui, Nature, 2004, 430, 329-332.
61. W. Marshall, C. Simon, R. Penrose and D. Bouwmeester, Physical Review Letters, 2003, 91, 130401.
62. L.-C. Hsu, T.-C. Chen, Y.-T. Yang, C.-Y. Huang, D.-W. Shen, Y.-T. Chen and M.-C. M. Lee, Lab on a Chip, 2013, 13, 1151-1155.
63. J.-H. Kang, K. Kim, H.-S. Ee, Y.-H. Lee, T.-Y. Yoon, M.-K. Seo and H.-G. Park, Nature Communications, 2011, 2, 582.
64. D. O’Dell, P. Schein and D. Erickson, Physical Review Applied, 2016, 6, 034010.
65. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, Optics Letters, 1986, 11, 288-290.
66. M. Eichenfield, C. P. Michael, R. Perahia and O. Painter, Nat Photon, 2007, 1, 416-422.
67. T. Carmon, L. Yang and K. J. Vahala, Optics Express, 2004, 12, 4742-4750.
68. Y. Xu, P. Zhang, S. Jung and A. Lee, Optics Express, 2014, 22, 28875-28889.
69. P. Zhang, S. Jung, A. Lee and Y. Xu, Physical Review E, 2015, 92, 063033.
70. P. Zhang, S. Jung, A. Lee and Y. Xu, Physical Review E, 2016, 93, 063119.
71. H. M. Lai, P. T. Leung, K. L. Poon and K. Young, Journal of the Optical Society of America B, 1989, 6, 2430-2437.
72. S. Kawata and T. Sugiura, Opt. Lett., 1992, 17, 772-774.
73. A. Nitkowski, A. Gondarenko and M. Lipson, Opt. Lett., 2010, 35, 1626-1628.