簡易檢索 / 詳目顯示

研究生: 陳政男
Cheng-Nan Chen
論文名稱: 以分子束磊晶製備之量子點紅外線光偵測器
Quantum-Dot Infrared Photodetectors Prepared by Molecular Beam Epitaxy
指導教授: 吳孟奇
Meng-Chyi Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 81
中文關鍵詞: 紅外線光偵測器遷移增強式正面入射吸收多重顏色之偵測躍遷機制
外文關鍵詞: infrared photodetectors, migration-enhanced, normal-incident absorption, multi-color detection, transition mechanisms
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, ten-period quantum-dot infrared photodetectors (QDIPs), single-period QDIPs and quantum-dot (QD)/quantum-well (QW) mixed-mode infrared photodetectors (MMIPs) prepared by molecular beam epitaxy (MBE) are investigated. With uniform QD size distribution, wide detection window and high responsivities are observed for the 10-period QDIP. The wide spectral response is attributed to the summation of transitions between the QD excited states and the wetting layer (WL) state instead of transitions between QD ground state and higher excited states. With the Fermi level raised from near or below the ground state to close or above the excited state, the single-period QDIPs with no response, highest response and depressed response are observed. The phenomenon is attributed to three different electron occupancy situations at the QD region resulted from the position of the flat-band Fermi level. The results suggest that unlike quantum-well infrared photodetectors (QWIPs), wide Fermi level tuning range is available for QDIPs, which is advantageous for dark current depression to achieve high-temperature operation. Also observed is the decrease of barrier heights with increasing Fermi level position in the QD structure. The phenomenon is attributed to the acceptor-like behavior of the depleted QD such that the p-type GaAs barrier height would be pushed higher. Larger QD sizes in both height and diameter and more uniform size distribution are observed for the migration-enhanced (MEE)-grown sample. The 10-period QDIP with QDs grown by MEE mode has revealed longer detection wavelength and reduced normal-incident absorption. The phenomenon reveals that beside the reduction of energy difference between confinement states, larger QD sizes would also depress the normal-incident absorption predicted for the theoretical zero-volume QD structures. To achieve multi-color detection within a single device structure, MMIPs are demonstrated to perform multi-color detection at both mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) ranges. The polarization-dependent spectral responses have shown that the higher normal-incident absorption is observed for the MWIR peaks, which suggest that the intraband transitions in the QD structure are responsible for the MWIR peaks while the intraband transition in the QW region for the LWIR peak. A model is also established to explain the transition mechanisms of the MMIPs.


    Abstract (in Chinese) Ⅰ Abstract (in English) Ⅱ Contents Ⅲ Figure Captions Ⅵ Table Captions Ⅸ Chapter 1 Introduction 1 Chapter 2 Device Fabrication and Transition Mechanisms of a Ten-Period InAs/GaAs Quantum-Dot Infrared Photodetector 6 2.1 Experiments 8 2.1.1 Device Processing Procedure for Quantum-Dot Infrared Photodetectors 8 2.1.2 Spectral Responses and I-V Characteristics Measurement System 15 2.1.3 InAs/GaAs QD Sample and Ten-Period QDIP Sample 19 2.2 Results and Discussion 20 2.3 Conclusions 28 Chapter 3 The Influence of Fermi Level Position on the Performances of Single-Period InAs/GaAs Quantum-Dot Infrared Photodetectors 29 3.1 Experiments 31 3.2 Results and Discussion 34 3.3 Conclusions 40 Chapter 4 The Influence of Quantum-Dot Size on the Performances of InAs/GaAs Quantum-Dot Infrared Photodetectors 41 4.1 Experiments 43 4.2 Results and Discussion 46 4.3 Conclusions 56 Chapter 5 Quantum-Dot/Quantum-Well Mixed-Mode Infrared Photodetectors for Multi-Color Detection 57 5.1 Experiments 59 5.2 Results and Discussion 62 5.3 Conclusions 75 Chapter 6 Conclusions 76 References 79

    [1] L. Chu, M. Arzberger, G. Bohm and G. Abstreiter, J. Appl. Phys. 85, 2355 (1999).
    [2] M. G. Alessi, M. Capizzi, A. S. Bhatti and A. Frova, Phys. Rev. B 59, 7620 (1999).
    [3] Q. Gong, R. N□tzel, G. J. Hamhuis, T. J. Eijkemans and J. H. Wolter, Appl. Phys. Lett. 81, 1887 (2002).
    [4] T. Yamauchi, Y. Matsuba, Y. Ohyama, M. Tabuchi and A. Nakamura, Jpn. J. Appl. Phys. 40, 2069 (2001).
    [5] G. Jolley, L. Fu, H. H. Tan and C. Jagadish, Appl. Phys. Lett. 91, 173508 (2007).
    [6] K. H. Schmidt, G. Medeiros-Ribeiro, J. Garcia and P. M. Petroff, Appl. Phys. Lett. 70, 1727 (1997).
    [7] D. Pan, E. Towe and S. Kennerly, Appl. Phys. Lett. 75, 2719 (1999).
    [8] S. T. Chou, M. C. Wu, S. Y. Lin and J. Y. Chi, Appl. Phys. Lett. 88, 173511 (2006).
    [9] S. T. Chou, S. F. Chen, S. Y. Lin, M. C. Wu, J. M. Wang, J. Crystal Growth 301-302, 817 (2007).
    [10] N. Vukmirovic, D. Indjin, Z. Ikonic and P. Harrison, Appl. Phys. Lett. 88, 251107 (2006).
    [11] S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, Jr, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell and D. Carothers, Appl. Phys. Lett. 86, 193501 (2005).
    [12] V. Ryzhii, Semicond. Sci. Technol. 11, 759 (1996).
    [13] S. F. Tang, S. Y. Lin and S. C. Lee, Appl. Phys. Lett. 78, 2428 (2001).
    [14] S. Y. Lin, Y. R. Tsai and S. C. Lee, Jpn. J. Appl. Phys. 40 L 1290 (2001).
    [15] S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol and S. W. Kennerly, IEEE Photon. Technol. Lett. 16, 1361 (2004).
    [16] S. Y. Lin, Y. R. Tsai, and S. C. Lee, Appl. Phys. Lett. 78, 2784 (2001).
    [17] Z. Ye, J. C. Campbell, Z. Chen, E. T. Kim, and A. Madhukar, J. Appl. Phys. 92, 7462 (2002).
    [18] S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, Proc. SPIE 6206, 62060J (2006).
    [19] P. Aivaliotis, L. R. Wilson, E. A. Zibik, J. W. Cockburn, M. J. Steer, and H. Y. Liu, Appl. Phys. Lett. 91, 013503 (2007).
    [20] L. Jiang, S. S. Li, N. T. Yeh, J. I. Chyi, C. E. Ross, and K. S. Jones, Appl. Phys. Lett. 82, 1986 (2003).
    [21] S. F. Tang, C. D. Chiang, P. K. Weng, Y. T. Gau, J. J. Ruo, S. T. Yang, C. C. Shih, S. Y. Lin, and S. C. Lee, IEEE Photon. Technol. Lett. 18, 986 (2006).
    [22] S. T. Chou, C. H. Tsai, M. C. Wu, S. Y. Lin, and J. Y. Chi, IEEE Photon. Technol. Lett. 17, 2409 (2005).
    [23] N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, Appl. Phys. Lett. 88, 133104 (2006).
    [24] X. Lu, J. Vaillancourt and M. J. Meisner, Appl. Phys. Lett. 91, 051115 (2007).
    [25] C. Heyn, Phys. Rev. B64, 165306 (2001).
    [26] G. Sek, K. Ryczko, M. Motyka, J. Andrzejewski, K. Wysocka, and J. Misiewicz, J. Appl. Phys. 101, 063539 (2007).
    [27] R. Heitz, A. Kalburge, Q. Xie, M. Grundmann, P. Chen, A. Hoffmann, A. Madhukar, and D. Bimberg, Phys. Rev. B57, 9050 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE