研究生: |
陳逸駿 Chen, Yi-Jyun |
---|---|
論文名稱: |
智慧電網中動態能量傳送系統之非合作與合作管理策略設計 Non-cooperative and Cooperative Management Strategy Design in Dynamic Energy Transfer Systems with RESs in Smart Grid Network |
指導教授: |
陳博現
Chen, Bor-Sen |
口試委員: |
黃志良
Hwang, Chih-Lyang 徐勝均 Xu, Sen-Dren 鄭博泰 Jheng, Bo-Tai |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 33 |
中文關鍵詞: | 智慧電網 、可再生能源 、非合作與合作策略 、多目標最佳化問題 、多目標基因演算法 、能量流管理 |
外文關鍵詞: | Smart grid, renewable energy sources (RES), noncooperative and cooperative strategy, multiobjective optimization problem (MOP), multiobjective evolutionary algorithm (MOEA), power flow management |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
未來一代電力系統中的智能電網具有電力流動的特點在並網模式下,但遇到的主要問題之一是不可預測的電源可再生能源(RESs)的使用。在非合作管理策略中,由於不同使用者將期望不同能量儲存的水平和對成本的考量,每個使用者在追求自己的利益時將可能在智能電網中與其他人發生部分衝突。目前,我們仍然找不到分析或計算方法有效地解決複雜的非合作能量流管理智能電網的問題,尤其是考慮了不可預期的可再生能源的電力供應。在這項研究中,我們制定了一個新的效用函數,每個管理者(用戶)可以通過它來設計他的非合作策略根據自己的考慮和其他管理者的可能影響。那麼智能電網中的非合作管理策略設計問題就可以了轉換為線性矩陣不等式(LMIs) - 條件多目標優化問題。因為LMIs約束的MOP問題不容易直接解出其Pareto最優解,因此我們提出了一種間接方法來解決這個MOP的非合作管理策略智能電網中的電力傳輸系統。此外,LMIs約束多目標基因演算法(MOEA)被開發用於有效地解決多人非合作管理策略。另一方面,在合作管理戰略的情況下,所有管理者都可以進行溝通和擁有在開始時彼此妥協了一個共同的期望目標。並且合作管理策略設計問題可以轉化為LMI約束的SOP,以保證穩健的H∞智能電網中的目標問題。最後,這兩種管理策略的模擬結果也說明了設計的程序和驗證了在智慧電網中動態能量傳遞系統的非合作與合作的策略表現。
Smart grid in the future generation of power system has the characteristic for the power flow in grid-connected mode, but one of the major issues encountered is the unpredictable power supply from renewable energy sources (RESs). In the non-cooperative management strategy, due to different desired energy storage levels and cost consideration, the microgrids involved pursue their own interests which may partly conflict with others in a smart grid network. At present, we still can not find an analytical or computational method to efficiently solve the complex non-cooperative power flow management problem for smart grid with unpredictable fluctuations of power supply from renewable energy sources. In this study, we formulate a novel utility function by which each manager (user) could design his non-cooperative strategy according to their own consideration and the possible effect of other managers’ strategies. Then the non-cooperative management strategy design problem in a smart grid network could be transformed to a linear matrix inequalities (LMIs)-constrained multi-objective optimization problem (MOP). Because the LMIs-constrained MOP problem is not easily solved directly for its Pareto optimal solutions, an indirect method is proposed to solve this MOP for the non-cooperative management strategy of power transfer system in smart grid network. Furthermore, a LMIs-constrained multi-objective evolution algorithm (MOEA) is developed to efficiently solve the multi-person non-cooperative management strategy. In the case of cooperative management strategy, all managers can communicate and have compromised a common desired target with each other at the beginning. The cooperative management strategy design problem could be transformed into a LMIs-constrained SOP to guarantee a robust H∞ target regulation problem in the smart grid. The simulation results of these two management strategies are also given to illustrate the design procedure and to validate the performance of the non-cooperative and cooperative management strategy of the dynamic energy transfer system in smart grid network.
[1] H. Farhangi, “The path of the smart grid,” IEEE Power Energy Mag., vol. 8, no. 1, pp. 18–28, Jan./Feb. 2010.
[2] A. Ipakchi and F. Albuyeh, “Grid of the future,” IEEE Power Energy Mag., vol. 7, no. 2, pp. 52–62, 2009.
[3] A. Vojdani, “Smart integration,” IEEE Power Energy Mag., vol. 6, no.6, pp. 71–79, 2008.
[4] L.H. Tsoukalas, and R. Gao, “From smart grid to an energy internet: assumptions, architectures, and requirements,” Proc.
2008 3rd IEEE International Conference on Electric Utility Deregulation, 2008, pp. 94-98.
[5] J. Zheng, D. W. Gao and L. Lin, “Smart meters in smart grid: an overview,” Green Technologies Conference, 2013 IEEE,
Denver, CO, 2013, pp. 57-64.
[6] R.H. Lasseter, P. Paigi, ”Microgrid: A Conceptual Solution,” Proceedings of the 2004 Power Electronics Specialists
Conference (PESC’04). Vol. 6, 42854290, June 2004.
[7] R.H. Lasseter et al., ”White Paper on Integration of Distributed Energy Resources—The CERTS MicroGrid Concept,”
Consort. Electr. Reliab. Technol. Solut. Gray, Davis, Gov., no. October, pp. 1-27, 2003.
[8] J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, “Defining control strategies for analysing microgrids islanded operation,”
Proc. IEEE St. Petersburg PowerTech, St. Petersburg, Russia, 2005.
[9] F. D. Kanellos, A. I. Tsouchnikas, N. D. Hatziargyriou, and S. Member, “Micro-Grid Simulation during Grid-Connected
and Islanded Modes of Operation”, Presented at the International Conference on Power Systems Transients (IPST’05),
Paper No. IPST05 – 113, Montreal, June 2005.
[10] A. Hooshmand, H.A. Malki, J. Mohammadpour, “Power flow management of microgrid networks using model predictive
control”, Computers & Mathematics with Applications, 64 (5) (2012), pp. 869-876.
[11] P. Nguyen, W. Kling, G. Georgiadis, M. Papatriantafilou, L. A. Tuan, and L. Bertling, “Distributed routing algorithms to
manage power flow in agent-based active distribution network,” Proc. IEEE PES Conference on Innovative Smart Grid
Technologies Europe, Lindholmen Science Park, Gothenburg, Sweden, Oct. 2010, pp. 1–7.
[12] M.-S. Lu, C.-L. Chang, W.-J. Lee, and L. Wang, “Combining the wind power generation system with energy storage
equipments,” Proc. IEEE Industry Applications Society Annual Meeting, Edmonton, Alberta, Canada, Oct. 2008, pp. 1–6.
[13] P. Li, “Energy storage is the core of renewable technologies,” IEEE Nanotechnol. Mag., vol. 2, no. 4, pp. 13–18, Dec.
2008.
[14] R. Minciardi and R. Sacile, “Optimal control in a cooperative network of smart power grids,” IEEE Systems Journal,
Volume: 6, Issue: 1, March 2012, pp.126-133.
[15] W.-Y. Chiu, H. Sun, and H. V. Poor, “Robust power flow control in smart grids with fluctuating effects,” Proc. IEEE Int.
Conference on Computer Communications Workshops, Orlando, FL, USA, Mar. 2012, pp. 97–102.
[16] W.-Y. Chiu, H. Sun, and H. V. Poor, “Demand-side energy storage system management smartgrid,” Proc.2012 IEEE 3rd
Int.Conf. SmartGrid Commun., 2012, pp. 73–78.
[17] S. Bruno, S. Lamonaca, G. Rotondo, U. Stecchi, and M. La Scala, “Unbalanced three-phase optimal power flow for smart
grids,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4504–4513, Oct. 2011.
[18] Y. Xu, W. Zhang, G. Hug, S. Kar, and Z. Li, “Cooperative control of distributed energy storage systems in a microgrid,”
IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 238–248, Jan. 2015.
[19] K. Tanaka, K. Uchida, K. Ogimi, T. Goya, A. Yona, T. Senjy, T. Funabashi, and C.-H. Kim, “Optimal operation by
controllable loads based on smart grid topology considering insolation forecasted error,” IEEE Trans. Smart Grid, vol. 2,
no. 3, pp. 438–444, Sep. 2011.
[20] S. Paudyal, C. A. Canizares, and K. Bhattacharya, “Optimal operation of distribution feeders in smart grids,” IEEE Trans.
Ind. Electron., vol. 58, no. 10, pp. 4495–4503, Oct. 2011.
[21] A. Mohsenian-Rad, V. Wong, J. Jatskevich, R. Schober, and A. LeonGarcia, “Autonomous demand-side management based
on gametheoretic energy consumption scheduling for the future smart grid,” IEEE Trans. Smart Grid, vol. I, no. 3, pp.
320-331, Dcc. 2010.
[22] W.-Y. Chiu, H. Sun, and H. V. Poor, “A multiobjective approach to multimicrogrid system design,” IEEE Trans. Smart
Grid, vol. 6, no. 5, pp. 2263–2272, Sep. 2015.
[23] Y. Wang, W. Saad, Z. Han, H. V. Poor, and T. Basar, “A game-theoretic approach to energy trading in the smart grid,”
IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1439–1450, May 2014.
[24] B.S. Chen and S.J. Ho, ”The stochastic evolutionary game for a population of biological networks under natural selection.”
Evolutionary Bioinformatics, Vol. 10, no.17, 00.17-38, 2014.
[25] K. Deb, S. Agrawal, A. Pratab and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, Vol. 6, No. 2, pp. 681-695.
[26] A. Abraham, L.C. Jain, and R. Goldberg, Evolutionary multiobjective optimization: Theoretical Advances and Applications.
New York, NY, USA: Springer, 2005.
[27] K. Del, Multi-objective Optimization Using Evolutionary Algorithms, 1st ed. Chichester, U.K.; Wiley, 2001.
[28] G.P. Liu, J.B. Yang, and J.F. Whidborne, Multiobjective Optimizational Control. Hertfordshire, U.K.: RSP Ltd, 2002.
[29] B. S. Chen and W. Zhang, “Stochastic H2/H1 Control with State Dependent Noise,” IEEE Trans. Automatic Control, vol.
49, no. 1, 2004, pp 45-57.
[30] W. Zhang and B. S. Chen, “State feedback H1 control for a class of nonlinear stochastic systems, ” SIAM Journal on
Control and Optimization, 44 (6), 1973–1991.
[31] W. Zhang, L. Xie and B. S. Chen, “Stochastic H2/H1 control: A Nash Game Approach,” CRC Press, Boca Taton London
England, 2017.
[32] B. S. Chen, H. C. Lee, and C. F. Wu, “Pareto optimal filter design for nonlinear stochastic fuzzy systems via multiobjective
optimization,” IEEE Trans. on Fuzzy Syst., vol. 23, no.2, pp. 387–399, 2014.
[33] S. Boyd, L. EI Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix inequalities in System and Control Theory.
Philadelphia, PA: SIAM, 1994.
[34] A. Cohen and U. Shaked, “Robust discrete-time H1-optimal tracking with preview,” International Journal of Robust and
Nonlinear Control 1998; 8(1):29–37.
[35] A. Joseph, and M. Shahidehpour, “Battery storage systems in electric power systems,” IEEE Power Engineering Society
General Meeting, 2006.
[36] Sunnyfounder, Taipei, Taiwan, Jul. 2015. [Online]. Available: https://www.sunnyfounder.com