研究生: |
卜項 Prashanth Kumar Amancha |
---|---|
論文名稱: |
A New Version of Diels-Alder Reaction and Synthetic Studies on Lignans and New OLED Materials 新開發的Diels-Alder反應、植物雌激素-木酚素與新有機發光二極體材料的合成研究 |
指導教授: |
劉行讓
Liu, Hsing-Jang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 415 |
中文關鍵詞: | Lignans 、Diels-Alder Reaction 、OLED Materials |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, chapter-1 reports the total syntheses of three natural products, (±)-4-hydroxycubebinone 1, (±)-5-methoxyclusin 2 and (±)-5'-methoxyyatien 3 as well as (±)-2,3-dibenzylbutyrolactone 56 via novel key intermediate □-cyano dibezylbutyrolactone. The natural products (±)-1, (±)-2, (±)-3 are EtOAc-soluble fraction of the water extract of Piper cubeba and have shown potent inhibitory activity on the metabolism mediated by CYP3A4.
The total synthesis of (±)-hydroxycubebinone 1 was achieved from □-cyano butyrolactone 64 arrived at an intramolecular Knoevenagel condensation/ hydrogenation process starting from commercially available syringaldehyde 57. Corey-Fuchs olefination of benzylated 57 (ie 58) followed by double elimination and trapping with para formaldehyde provided alkynol 60 which was then converted to □-cyano butyrolactone 64 in 4 steps. The alkylation of □-cyano butyrolactone 64 with 5-methoxy piperonyl bromide furnished (±)-□-cyano dibenzylbutyrolactone (±)-65, followed by removal of benzyl group and subsequent reductive removal of cyano group by using LN gave (±)-hydroxycubebinone 1.
The total syntheses of (±)-5-methoxy clusin 2 and (±)-5'-methoxy yatien 3 was achieved via construction of □-cyano butyrolactone 73 from intramolecular Knoevenagel condensation/hydrogenation process starting from commercially available 5-methoxy piperonal 67. Corey-Fuchs olefination of 5-methoxy piperonal 67 followed by double elimination and trapping with para formaldehyde provided alkynol 69 which was converted to □-cyano butyrolactone 73 in 4 steps. The alkylation of □-cyano butyrolactone 73 with 3,4,5-trimethoxy benzyl bromide furnished (±)-□-cyano dibenzylbutyrolactone (±)-74. Reductive decyanation of lactone (±)-74 by LN furnished (±)-5'-methoxy yatien 3, which yielded (±)-5-methoxy clusin 2 by reduction with DIBAL-H.
The synthesis of (±)-2,3-dibenzylbutyrolactone 56 was achieved from □-cyano butyrolactone 54 which was obtained from an intramolecular Knoevenagel condensation/hydrogenation process. The Alkylation of □-cyano butyrolactone 54 with benzyl bromide furnished a new compound (±)-□-cyano-2,3-dibenzylbutyrolactone (±)-55 which on subsequent reductive removal of cyano group using lithium naphthalenide (LN) gave (±)-2,3-dibenzyl butyrolactone 56.
The chapter-2 reports on the successful application of highly substituted 2-cyano acrylates 108~115 as dienophiles in the Diels□Alder cycloaddition reaction to give cycloadducts 116~124. Acrylates 108~115 were readily arrived at by Knoevenagel condensation of an appropriate aldehyde or ketone with cyano ketones 103~107. When commercially unavailable, the requisite cyano ketones were achieved individually by a base-mediated alkylation of the appropriate esters with acetonitrile. Cycloadducts 116~124 were found to be amenable to reductive decyanation using lithium naphthalenide and for a majority of the substrates, the ensuing enolate could be trapped with an alkylating agent. In essence, a very effective and versatile approach to highly substituted cyclohexenes have been developed by taking advantage of the superior dienophilicity of 2-cyano acrylates coupled with propensity of the □-cyano carbonyl system to undergo reductive alkylation using lithium naphthalenide and an alkylating agent.
The chapter-3 reports on the work towards the development of novel chemical entities suitable for incorporation into organic light emitting diodes (OLEDs) emitting blue-green to yellow light. It reports not only the emission color but also the photoluminescence of Alq3 can be tuned by introduction of ethylthio, ethylsulfonyl, bromo and phenyl groups at different positions of the quinolinolato ring. We synthesized various substituted aluminum quinolato complexes (141, 144, 149, 151, 155, 158, 160) starting from commercially available 8-hydroxyquinoline 137 and O-anisidine 145. Aluminum quinolato complexes 141 and 144 were achieved starting from 8-hydroxyquinoline 137 in 3 and 4 steps respectively whereas the complexes 149, 151, 155, 158, 160 were achieved by Skraup quinoline synthesis of O-anisidine 145 and so on.
1. Harworth, R. D. J. Chem. Soc. 1942, 448.
2. Macrae, W. D.; Towers, G. H. N. Phytochemistry 1984, 23, 1207.
3. Ward, R. S. Nat. Prod. Rep. 1999, 16, 75.
4. Ward, R. S. Nat. Prod. Rep. 1997, 14, 43.
5. Ward, R. S. Nat. Prod. Rep. 1995, 12, 183.
6. Ward, R. S. Nat. Prod. Rep. 1993, 10, 1.
7. Usia, T.; Watabe, T.; Kadota, S.; Tezuka,Y. J. Nat. Prod. 2005, 68, 64.
8. Medicinal Herb Index in Indonesia, 2nd ed.; PT Eisai Indonesia:
Jakarta, 1995; p 21.
9. Sastroamidjojo, S. In Obat Asli Indonesia; Tjokronegoro, A., Ed.; Dian Rakyat: Indonesia, 1997; p 171.
10. Badheka, L. P.; Prabhu, B. R.; Mulchandani, N. B. Phytochemistry 1987, 26, 2033.
11. Badheka, L. P.; Prabhu, B. R.; Mulchandani, N. B. Phytochemistry 1986, 25, 487.
12. Prabhu, B. R.; Mulchandani, N. B. Phytochemistry 1985, 24, 329.
13. Li, N.; Wu, J. L; Sakai, J. I.; Ando, M. J. Nat. Prod. 2003, 66, 1421.
14. Tomioka, K.; Koga, K. Tetrahedron Lett. 1979, 20, 3315.
15. Lalami, K.; Dhal, R.; Brown, E. Heterocycles 1988, 27, 1131.
16. Brown, E.; Robin, J. P.; Dhal, R. Tetrahedron 1982, 38, 2269.
17. Liu, H. J.; Chan, W. H.; Lee, S. P. Tetrahedron Lett. 1978, 19, 4461.
18. Ramachary, D. B.; Babul Reddy, G. Org. Biomol. Chem. 2006, 4, 4463.
19. Shia, K. S.; Chang, N. Y.; Yip, J.; Liu, H. J. Tetrahedron Lett. 1997, 38, 7713.
20. Kung, L. R.; Tu, C. H,; Shia, K. S.; Liu, H. J. Chem.Commun. 2003, 2490.
21. Kates, S. A.; Dombroski, M. A.; Snider, B. B. J. Org. Chem. 1990, 55, 2427.
22. Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
23. Tsuji, J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis, Wiley, Chichester, 1995.
24. (a) Ito, Y.; Aoyama, H.; Hirao, T.; Mochizuki, A.; Saegusa, T. J. Am. Chem. Soc. 1979, 101, 494. (b) Kende, A. S.; Roth, B.; Sanfilippo, P. J. J. Am. Chem. Soc. 1982, 104, 1784.
25. Hegedus, L. S.; Williams, R. E.; McGuire, M. A.; Hayashi, T. J. Am. Chem. Soc. 1980, 102, 4973.
26. (a) Garden, S. J.; Guimaraes, C. R. W.; Correa, M. B.; Fernandes de Oliveira, C. A.; Pinto, A. C.; Bicca de Alencastro, R. J. Org. Chem. 2003, 68, 8815; (b) Satyamurthi, N.; Singh, J.; Indrapal Singh, A. Synthesis 2000, 3, 375.
27. Ramachary, D. B.; Chowdari, N. S.; Barbas, C. F., III Angew. Chem., Int. Ed. 2003, 42, 4233.
28. Curran, D. P. Synthesis 1988, 417, 489.
29. Bush, J. B., Jr.; Finkbeiner, H. J. Am. Chem. Soc. 1968, 90, 5903.
30. Corey, E. J.; Kang, M. J. Am. Chem. Soc. 1984, 106, 5384.
31. Peterson, J. R.; Egler, R. S.; Horsley, D. B.; Winter, T. J. Tetrhaedron
Lett. 1987, 28, 6109.
32. Brocksom, T. J.; Coelho, F.; Depres, J. P.; Greene, A. E.; Freire de Lima, M. E.; Hamelin, O.; Hartmann, B.; Kanazawa, A. M.; Wang, Y. J. Am. Chem. Soc. 2002, 124, 15313.
33. Waters, M. S.; Jennifer, M.; Cowen, J.; Williums, C. Mc.; Maligres, P. E.; David Askin. Tetrahedron Lett. 2000, 41, 141.
34. Belletire, J. L.; Mahmoodi, N. O. Synthetic comm., 1989, 19, 3371.
35. Zachova, H.; Man, S.; Necas, M.; Potacek, M. J. Org. Chem. 2005, 55, 2548-2557.
36. Lalami, K.; Dhal, R.; Brown,E. J. Nat. Prod. 1991, 54, 119.
37. Koul, S. K; Taneja, S. C.; Dhar, K. L.; Atal, C. K. Phytochemistry 1984, 23, 2099.
38. Tanoguchi, M.; Arimoto, M.; Saika, H.; Yamaguchi, H. Chem. Pharm. Bull. 1987, 35, 4162.
39. Nishibe, S.; Okabe, K.; Hisada, S. Chem. Pharm. Bull. 1981, 29, 2078.
40. Diels, O.; Alder, K. Justus Liebigs Ann. Chem. 1928, 460, 98.
41. (a) Fringuelli, F.; Taticchi, A. Dienes in the Diels-Alder Reaction, Wiley, New York, 1990; (b) Paquette, L. A. Comprehensice Organic Synthesis, vol. 5, Pergamon Press, Oxford, 1991.
42. Liu, H. J.; Shia, K. S.; Han, Y.; Wang, Y. Synlett, 1995, 545.
43. Liu, H. J.; Shia, K. S.; Han, Y.; Sun, D.; Wang, Y.; Can. J. Chem. 1997, 75, 646.
44. Liu, H. J.;Shia, K. S. Tetrahedron 1998, 54, 13449.
45. Liu, H. J.; Zhu, J. L.; Chen, I. C.; Jankowska, R.; Han, Y. ; Shia, K. S. Angew. Chem. Int. Ed., 2003, 42, 1851.
46. Liu, H. J.; Browne, E. N. C. Can. J. Chem. 1987, 65, 1262.
47. Liu, H. J.;Han, Y. Tetrahedron 1998, 34, 423.
48. (a) Ph.D. thesis of Wu Ren, National Tsing Hua University, 2003. (b) Ph.D. thesis of Liao Zhixiong, National Tsing Hua University, 2004.
49. Holy, N. L. Chem. Rev. 1974, 74, 243.
50. Cohen, T.; Bhupathy, M. Acc. Chem. Res. 1989, 22, 152.
51. Najera, C.; Yus, M. Trends Org. Chem. 1991, 2, 155.
52. Yus, M. Chem. Soc. Revs. 1996, 155.
53. Racccanelli, S.; Pavoni, B.; Maro;I, L. Toxcol. Environ. Chem. 1994, 45, 1221.
54. (a) Ashby, E.C. Acc. Chem. Res. 1988, 21, 414. (b) Chanon, M.; Tobe, M. L. Angew. Chem., Int. Ed. Engl. 1982, 21, 1. (c) Pross, A. Acc. Chem. Res. 1985, 18, 212. (d) Chanon, M. Acc. Chem. Res. 1987, 201.
55. (a) Harring, S. R.; Livinghouse, T. Tetrhedron Lett. 1989, 30, 1499. (b) Barluenga, J.; Fernandez-Simon, J. L.; Concellon, J. M.; Yus, M. Synthesis 1988, 234. (c) Komatsu, K.; Nishinaga, T.; Aonuma, S.; Hirosawa, C.;Takeuchi, K.; Lindner, H. J. Tetrahedron Lett. 1911, 32, 6767. (d) Kondo, Y.; Muraata, N.; Sakamoto, T. Heterocycles 1994, 37, 1467. (e) Guijaro, A.;Yus, M. Tetrahedron 1994, 50, 13269. (f) Guijaro, A.; Romon, D. J.; Yus, M. Tetrahedron 1993, 49, 469.
56. Guijaro, A.;Yus, M. Tetrahedron 1994, 50, 3447.
57. Agawa, T.; Ishida, M.; Ohshiro, Y. Synthesis 1980, 933.
58. Pradhan, S. K.; Radhakrishnan, T. V.; Subramanian, R. J. Org. Chem. 1976, 41, 1943.
59. (a) Bartmann, E. Angew. Chem., Int. Ed. Engl. 1986, 25, 653. (b) Almena, J.; Foubeo, F.; Yus, M. J. Org. Chem. 1994, 59, 3210.
60. Philips, K. D.; Horwitz, J. P. J. Org. Chem. 1975, 40, 1856.
61. (a) Rieke, R. D.; Dawson, B. T.; Stack, D. E.; Stinn, D. E. Synth. Commun. 1990, 20, 2711. (b) Jutzi, P.; Hielscher, B. Organometallics 1986, 5, 1201.
62. (a) rychnovsky, S. D.; Swenson, S. S. J. Org. Chem. 1997, 62, 1333. (b) Malassene, R.; Vanquelef, E.; Toupet, L.; Hurvois, J. P.; Moinet, C. Org. Biomol. Chem. 2003, 1, 547. (c) Savoia, D.; Taglivini, E.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. 1980, 45, 3227. (d) Shono, T.; terauchi, J. Kitayama, K., Takeshima, Y. I.; Matsumura, Y. Tetrahedron 1992, 48, 8253. (e) Kang, H. Y.; Hong, W. S.; Cho, Y. S.; Koh, H. Y. Tetrahedron Lett. 1995, 36, 7661. (f) Black, D. St. C.; Doyle, J. E. Aust. J. Chem. 1978, 31, 2323. (g) E. E. van Tamelen,; Bjorklund, C.; Rudler, H. J. Am. Chem. Soc. 1971, 93, 7113.
63. Shia, K. S.; Chang, N. Y.; Yip, J.; Liu, H. J. Tetrahedron Lett. 1998, 39, 4183.
64. Liu, H. J.; Shia, K. S.; Zhu, J. L. Tetrahedron Lett. 1997, 38, 7713.
65. Master's thesis of Chia-liang, National Tsing Hua University, 1999.
66. Master's thesis of Xie Wan-ping, National Tsing Hua University, 2001.
67. Liu, H. J.; Ly, T. W.; Tai, C. L.; Wu, J. D.; Ling, J. K.; Guo, J. C.; Tseng, N, W.; Shia, K. S. Tetrahedron 2003, 59, 1209.
68. (a) Huang, M. J. Chem. Am. Soc. 1946, 68, 2487. (b) Huang, M. J. Am. Chem.. Soc. 1949, 71, 3301.
69. Rao, C. G.; Kulkarni, S. U.; Brown, H. C. J. Organometal. Chem. 1979, 172, C20. Brown, H. C.; Kulkarni, S. U.; Rao, C. G. Synthesis 1980, 151.
70. (a) Staudinger, H. Die Ketene, F. Enke, Stuttgart, 1912. (b) Yamabe,S.; Tatsuo, D. J. Am. Chem. Soc. 1996, 118, 6518.
71. Ruden, R. A.; Bonjouklian, R. J. Org. Chem. 1997, 78, 2473.
72. Ph.D. thesis of Cao Jing bo, National Tsing Hua University, 2005.
73. Kreiser, W.; Haumesser, W.; Thomas, A. F. Helv. Chem. Acta. 1974, 57, 164.
74. Onaka, M.; Hashimoto, N.; Yamasaki, R.; Kitaba, Y. Chem. Lett. 2002, 166.
75. Ph.D. thesis of Toru Guo, National Tsing Hua University, 2006.
76. Ji, Y.; Trenkle, W. C.; Vowles, J. V. Org. Lett. 2006, 8, 1161.
77. Liu, H. J.; Shia, K. S.; Han, Y.; Wang, Y. Synlett 1995, 545.
78. Prajapati, D.; Lekhok, K. C.; Sandhu, T. S.; Ghosh, A. C. J. Chem. Soc., Perkin Trans. 1 1996, 1.
79 Qi, S.; Xiang, S. L.; Mei, G. Z.; Ming, C. T.; Tao, L. R. Chines Journal of Chemistry 2005, 23, 745.
80. Hayashi, Y.; Yamguchi, J.; Shoji, M. Tetrahedron 2002, 58, 9839.
81. Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042
82. Vincett, P. S.; Barlow, W. A.; Hann, R. A.; Roberts, G. A. Thin Solid Films 1982, 94, 476.
83. Tang,C.W.; VanSlyke, S.A. Appl. Phys. Lett. 1987, 51, 913.
84. Tang,C.W.; VanSlyke, S.A.; Chen, C.H. J. Appl. Phys. 1989, 65, 3610.
85. Nakayama, T. ; Itoh, Y.; Kakuta, A. Appl. Phys. Lett. 1993, 63, 595.
86. Hiramoto, M.; Tani, J.; Yokoyama, M. Appl. Phys. Lett. 1993, 62, 666.
87. Ohmori, Y.; Fujii, A.; Uchida, M.; Morishima, C.; Yoshino, K. Appl. Phys. Lett. 1993, 63, 1871.
88. Hosokawa, C.; Higashi, H.; Kusumoto,T. Appl. Phys. Lett. 1993, 62,
3238.
89. Curioni, A. Andreoni, W. J. Am. Chem. Soc. 1999, 121, 8216.
90. Sugimoto, M.; Anzai, M.; Sakanoue, K.; Sakaki, S. Apply. Phys. Lett. 2001, 79, 2348.
91. Kido, J.; Iizumi, Y. Chem. Lett. 1997, 963.
92. Ballardini, P.; Varani G.; Indelli, M. T.; Scandola, F. Inorg. Chem. 1986, 25, 3858.
93. Sapochak, L. S.; Padmaperuma, A.; Washton, N.; Endrino, F.; Schmett, G. T.; Marshall, J.; Fogarty, D.; Burrows, P. E.; Forrest, S. R. J. Am. Chem. Soc. 2001, 123, 6300.
94. Han, Y. K.; Lee, S. U. Chem. Phy. Lett. 2002, 366, 9.
95. Li, H.; Zhang, F.; Wang, Y.; Zheng, D. Mater. Sci. Eng. B 2003, 100, 40.
96 Pohl, R.; Montes, V. A.; Shinar, J.; Anzenbacher Jr., P. J. Org. Chem. 2004, 69, 1723.
97. Shi, Y. W.; Shi, M. M; Huang, J. C.; Chen, H. Z.; Wang, M.; Liu, X. D.; Ma, Y. G.; Xu, H.; Yang, B. Chem. Cmmun., 2006, 1941.
98. Sugimoto, M.; Sakaki, S.; Sakanoue, K.; Newton M. D. Apply. Phys. Lett. 2001, 90, 6092.
99. Ph. D thesis of Yi Hsuan She National Tsing Hua University, 2006.
100. Prasad, R.; Coffer, H. L. D.; Fernando, Q.; Freiser, H. J. Org. Chem. 1965, 30, 1251.
101. Skraup, Z. H. Ber. 1880, 13, 2086.
102. Cheng, J. A.; Chen, C. H.; Lia, C. H. Chem. Mater. 2004, 16, 2862.
103. Rodrigues, J. A. R.; Siqueira-Filho, E. P.; Mancilha, M.; Moran, P. J. S. Synth. Commun. 2003, 33, 331.