簡易檢索 / 詳目顯示

研究生: 卜項
Prashanth Kumar Amancha
論文名稱: A New Version of Diels-Alder Reaction and Synthetic Studies on Lignans and New OLED Materials
新開發的Diels-Alder反應、植物雌激素-木酚素與新有機發光二極體材料的合成研究
指導教授: 劉行讓
Liu, Hsing-Jang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 415
中文關鍵詞: LignansDiels-Alder ReactionOLED Materials
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, chapter-1 reports the total syntheses of three natural products, (±)-4-hydroxycubebinone 1, (±)-5-methoxyclusin 2 and (±)-5'-methoxyyatien 3 as well as (±)-2,3-dibenzylbutyrolactone 56 via novel key intermediate □-cyano dibezylbutyrolactone. The natural products (±)-1, (±)-2, (±)-3 are EtOAc-soluble fraction of the water extract of Piper cubeba and have shown potent inhibitory activity on the metabolism mediated by CYP3A4.
    The total synthesis of (±)-hydroxycubebinone 1 was achieved from □-cyano butyrolactone 64 arrived at an intramolecular Knoevenagel condensation/ hydrogenation process starting from commercially available syringaldehyde 57. Corey-Fuchs olefination of benzylated 57 (ie 58) followed by double elimination and trapping with para formaldehyde provided alkynol 60 which was then converted to □-cyano butyrolactone 64 in 4 steps. The alkylation of □-cyano butyrolactone 64 with 5-methoxy piperonyl bromide furnished (±)-□-cyano dibenzylbutyrolactone (±)-65, followed by removal of benzyl group and subsequent reductive removal of cyano group by using LN gave (±)-hydroxycubebinone 1.
    The total syntheses of (±)-5-methoxy clusin 2 and (±)-5'-methoxy yatien 3 was achieved via construction of □-cyano butyrolactone 73 from intramolecular Knoevenagel condensation/hydrogenation process starting from commercially available 5-methoxy piperonal 67. Corey-Fuchs olefination of 5-methoxy piperonal 67 followed by double elimination and trapping with para formaldehyde provided alkynol 69 which was converted to □-cyano butyrolactone 73 in 4 steps. The alkylation of □-cyano butyrolactone 73 with 3,4,5-trimethoxy benzyl bromide furnished (±)-□-cyano dibenzylbutyrolactone (±)-74. Reductive decyanation of lactone (±)-74 by LN furnished (±)-5'-methoxy yatien 3, which yielded (±)-5-methoxy clusin 2 by reduction with DIBAL-H.
    The synthesis of (±)-2,3-dibenzylbutyrolactone 56 was achieved from □-cyano butyrolactone 54 which was obtained from an intramolecular Knoevenagel condensation/hydrogenation process. The Alkylation of □-cyano butyrolactone 54 with benzyl bromide furnished a new compound (±)-□-cyano-2,3-dibenzylbutyrolactone (±)-55 which on subsequent reductive removal of cyano group using lithium naphthalenide (LN) gave (±)-2,3-dibenzyl butyrolactone 56.
    The chapter-2 reports on the successful application of highly substituted 2-cyano acrylates 108~115 as dienophiles in the Diels□Alder cycloaddition reaction to give cycloadducts 116~124. Acrylates 108~115 were readily arrived at by Knoevenagel condensation of an appropriate aldehyde or ketone with cyano ketones 103~107. When commercially unavailable, the requisite cyano ketones were achieved individually by a base-mediated alkylation of the appropriate esters with acetonitrile. Cycloadducts 116~124 were found to be amenable to reductive decyanation using lithium naphthalenide and for a majority of the substrates, the ensuing enolate could be trapped with an alkylating agent. In essence, a very effective and versatile approach to highly substituted cyclohexenes have been developed by taking advantage of the superior dienophilicity of 2-cyano acrylates coupled with propensity of the □-cyano carbonyl system to undergo reductive alkylation using lithium naphthalenide and an alkylating agent.
    The chapter-3 reports on the work towards the development of novel chemical entities suitable for incorporation into organic light emitting diodes (OLEDs) emitting blue-green to yellow light. It reports not only the emission color but also the photoluminescence of Alq3 can be tuned by introduction of ethylthio, ethylsulfonyl, bromo and phenyl groups at different positions of the quinolinolato ring. We synthesized various substituted aluminum quinolato complexes (141, 144, 149, 151, 155, 158, 160) starting from commercially available 8-hydroxyquinoline 137 and O-anisidine 145. Aluminum quinolato complexes 141 and 144 were achieved starting from 8-hydroxyquinoline 137 in 3 and 4 steps respectively whereas the complexes 149, 151, 155, 158, 160 were achieved by Skraup quinoline synthesis of O-anisidine 145 and so on.


    Abstract..................................................................................................................I Acknowledgments................................................................................................V Table of contents................................................................................................VI List of Tables………………………………………………...…………………X List of Figures…………………………………………………………...……XII List of Schemes………………………………………..………….…………XVI List of Abbreviations....................................................................................XVIII Chapter 1: Total Syntheses of Lignans (±)-4-Hydroxycubebinone, (±)-5- Methoxyclusin (±)-5'-Methoxyyatien and (±)-2,3-Dibenzylbutyro-lactone……...………….……………………………………………..1 Introduction………………………………………………………........................3 1.0.1 Definition and classification of lignans………………………..........3 Results and Discussion……………………………….....................................9 Synthetic Approach I……………………………………………………..…...9 1.1.1 Palladium acetate mediated cyclization………………..….….….….9 1.1.2 Synthesis of compound 27……………………………………..…9 1.1.3 Palladium acetate mediated cyclization (model study)…………...12 1.1.4 Synthesis of compound 31……………………………………….12 Synthetic Approach II…………………………………………...…………...14 1.2.1 Intramolecular cyclization by epoxide ring opening……………14 Synthetic Approach III…………………………………………………...…….17 1.3.1 Intramolecular radical cyclization with Mn(OAc)3…...……….......17 1.3.2 Sythesis of Compound 48……………………………………….19 Synthetic Approach IV…………………………………………...…………….21 1.4.1 Synthesis of Hydroxymethyl-□-Aryl ketone 52…………………21 1.4.2 Synthesis of □-keto □-cyano ester 53…………………………….22 1.4.3 Synthesis of (±)-2,3-Dibenzylbutyrolactone 54………...……….22 Total Synthesis of (±)-4-Hydroxycubebinone (1)……....................…………26 1.5.1 Synthesis of Hydroxymethyl-□-Aryl ketone system 62…..……27 1.5.2 Synthesis of (±)-4-Hydroxycubebinone 1....………..…………..29 Total Synthesis of (±)-5-Methoxyclusin (2) and (±)-5'-Methoxyyatien (3)...38 1.6.1 Synthesis of Hydroxymethyl-□-Aryl ketone system 69…...…..39 1.6.2 Synthesis of (±)-5'-Methoxyyatien 3.........................….............40 1.6.3 Synthesis of (±)-5-Methoxyclusin 2……..................………….....49 Conclusion………….…………………………………...........…........…….…54 Chapter 2: The Application of □-Cyano-□,□-unsaturated Ketones as Congested Enone Equivalents in Diels□Alder Reaction……………………..55 Introduction…………………………………………………...…………........57 Results and Discussion………………........………………………..……….....65 Synthesis of □-ketonitriles..................................................................................65 Synthesis of □-substituted □-cyano-□,□-unsaturated ketones as dienophiles...67 Diels-Alder reaction..........................................................................................74 2.1.1 Diels-Alder reaction of asymmetrical dienes.................................75 2.1.2 Diels-Alder reaction of Symmetrical dienes...................................83 Lithium Naphthalenide Induced Reductive Alkylation.......................................94 2.2.1 Replacement of cyano group of the Diels□Alder adducts possessing t-butyl and phenyl carbonyl groups at □-position to the cyano group..........................................................................................94 2.2.2 Replacement of cyano group of Diels□Alder adducts possessing methyl, ethyl and cyclopropyl carbonyl groups............................100 Conclusion......................................................................................................105 Chapter 3: Synthesis and Characterization of Various Substituted Alq3 Complexes………………………………………………………..107 Introduction……………………………………………………………...........109 Results and Discussion…………………………….…………………............115 3.1.1 Synthesis of Al(EtSq)3 Complex 141.......................................116 3.1.2 Synthesis of Al(EtSO2q)3 Complex 144........................................118 3.1.3 Synthesis of Al(MeEtSq)3 Complex 149.......................................120 3.1.4 Synthesis of Al(MeEtSO2q)3 Complex 151...................................124 3.1.5 Synthesis of Al(Phq)3 Complex 155..............................................125 3.1.6 Synthesis of Al(PhBrq)3 Complex 158.........................................128 3.1.7 Synthesis of Al(PhdiBrq)3 Complex 160.......................................131 Characterization of Alq3 complexes..................................................................134 Conclusion.........................................................................................................143 Experimental Results........................................................................................144 References.........................................................................................................217 X-ray Crystal Structures and Data....................................................................225 NMR Spectroscopy (1H-NMR, 13C-NMR and DEPT Spectrums )................340

    1. Harworth, R. D. J. Chem. Soc. 1942, 448.
    2. Macrae, W. D.; Towers, G. H. N. Phytochemistry 1984, 23, 1207.
    3. Ward, R. S. Nat. Prod. Rep. 1999, 16, 75.
    4. Ward, R. S. Nat. Prod. Rep. 1997, 14, 43.
    5. Ward, R. S. Nat. Prod. Rep. 1995, 12, 183.
    6. Ward, R. S. Nat. Prod. Rep. 1993, 10, 1.
    7. Usia, T.; Watabe, T.; Kadota, S.; Tezuka,Y. J. Nat. Prod. 2005, 68, 64.
    8. Medicinal Herb Index in Indonesia, 2nd ed.; PT Eisai Indonesia:
    Jakarta, 1995; p 21.
    9. Sastroamidjojo, S. In Obat Asli Indonesia; Tjokronegoro, A., Ed.; Dian Rakyat: Indonesia, 1997; p 171.
    10. Badheka, L. P.; Prabhu, B. R.; Mulchandani, N. B. Phytochemistry 1987, 26, 2033.
    11. Badheka, L. P.; Prabhu, B. R.; Mulchandani, N. B. Phytochemistry 1986, 25, 487.
    12. Prabhu, B. R.; Mulchandani, N. B. Phytochemistry 1985, 24, 329.
    13. Li, N.; Wu, J. L; Sakai, J. I.; Ando, M. J. Nat. Prod. 2003, 66, 1421.
    14. Tomioka, K.; Koga, K. Tetrahedron Lett. 1979, 20, 3315.
    15. Lalami, K.; Dhal, R.; Brown, E. Heterocycles 1988, 27, 1131.
    16. Brown, E.; Robin, J. P.; Dhal, R. Tetrahedron 1982, 38, 2269.
    17. Liu, H. J.; Chan, W. H.; Lee, S. P. Tetrahedron Lett. 1978, 19, 4461.
    18. Ramachary, D. B.; Babul Reddy, G. Org. Biomol. Chem. 2006, 4, 4463.
    19. Shia, K. S.; Chang, N. Y.; Yip, J.; Liu, H. J. Tetrahedron Lett. 1997, 38, 7713.
    20. Kung, L. R.; Tu, C. H,; Shia, K. S.; Liu, H. J. Chem.Commun. 2003, 2490.
    21. Kates, S. A.; Dombroski, M. A.; Snider, B. B. J. Org. Chem. 1990, 55, 2427.
    22. Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
    23. Tsuji, J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis, Wiley, Chichester, 1995.
    24. (a) Ito, Y.; Aoyama, H.; Hirao, T.; Mochizuki, A.; Saegusa, T. J. Am. Chem. Soc. 1979, 101, 494. (b) Kende, A. S.; Roth, B.; Sanfilippo, P. J. J. Am. Chem. Soc. 1982, 104, 1784.
    25. Hegedus, L. S.; Williams, R. E.; McGuire, M. A.; Hayashi, T. J. Am. Chem. Soc. 1980, 102, 4973.
    26. (a) Garden, S. J.; Guimaraes, C. R. W.; Correa, M. B.; Fernandes de Oliveira, C. A.; Pinto, A. C.; Bicca de Alencastro, R. J. Org. Chem. 2003, 68, 8815; (b) Satyamurthi, N.; Singh, J.; Indrapal Singh, A. Synthesis 2000, 3, 375.
    27. Ramachary, D. B.; Chowdari, N. S.; Barbas, C. F., III Angew. Chem., Int. Ed. 2003, 42, 4233.
    28. Curran, D. P. Synthesis 1988, 417, 489.
    29. Bush, J. B., Jr.; Finkbeiner, H. J. Am. Chem. Soc. 1968, 90, 5903.
    30. Corey, E. J.; Kang, M. J. Am. Chem. Soc. 1984, 106, 5384.
    31. Peterson, J. R.; Egler, R. S.; Horsley, D. B.; Winter, T. J. Tetrhaedron
    Lett. 1987, 28, 6109.
    32. Brocksom, T. J.; Coelho, F.; Depres, J. P.; Greene, A. E.; Freire de Lima, M. E.; Hamelin, O.; Hartmann, B.; Kanazawa, A. M.; Wang, Y. J. Am. Chem. Soc. 2002, 124, 15313.
    33. Waters, M. S.; Jennifer, M.; Cowen, J.; Williums, C. Mc.; Maligres, P. E.; David Askin. Tetrahedron Lett. 2000, 41, 141.
    34. Belletire, J. L.; Mahmoodi, N. O. Synthetic comm., 1989, 19, 3371.
    35. Zachova, H.; Man, S.; Necas, M.; Potacek, M. J. Org. Chem. 2005, 55, 2548-2557.
    36. Lalami, K.; Dhal, R.; Brown,E. J. Nat. Prod. 1991, 54, 119.
    37. Koul, S. K; Taneja, S. C.; Dhar, K. L.; Atal, C. K. Phytochemistry 1984, 23, 2099.
    38. Tanoguchi, M.; Arimoto, M.; Saika, H.; Yamaguchi, H. Chem. Pharm. Bull. 1987, 35, 4162.
    39. Nishibe, S.; Okabe, K.; Hisada, S. Chem. Pharm. Bull. 1981, 29, 2078.
    40. Diels, O.; Alder, K. Justus Liebigs Ann. Chem. 1928, 460, 98.
    41. (a) Fringuelli, F.; Taticchi, A. Dienes in the Diels-Alder Reaction, Wiley, New York, 1990; (b) Paquette, L. A. Comprehensice Organic Synthesis, vol. 5, Pergamon Press, Oxford, 1991.
    42. Liu, H. J.; Shia, K. S.; Han, Y.; Wang, Y. Synlett, 1995, 545.
    43. Liu, H. J.; Shia, K. S.; Han, Y.; Sun, D.; Wang, Y.; Can. J. Chem. 1997, 75, 646.
    44. Liu, H. J.;Shia, K. S. Tetrahedron 1998, 54, 13449.
    45. Liu, H. J.; Zhu, J. L.; Chen, I. C.; Jankowska, R.; Han, Y. ; Shia, K. S. Angew. Chem. Int. Ed., 2003, 42, 1851.
    46. Liu, H. J.; Browne, E. N. C. Can. J. Chem. 1987, 65, 1262.
    47. Liu, H. J.;Han, Y. Tetrahedron 1998, 34, 423.
    48. (a) Ph.D. thesis of Wu Ren, National Tsing Hua University, 2003. (b) Ph.D. thesis of Liao Zhixiong, National Tsing Hua University, 2004.
    49. Holy, N. L. Chem. Rev. 1974, 74, 243.
    50. Cohen, T.; Bhupathy, M. Acc. Chem. Res. 1989, 22, 152.
    51. Najera, C.; Yus, M. Trends Org. Chem. 1991, 2, 155.
    52. Yus, M. Chem. Soc. Revs. 1996, 155.
    53. Racccanelli, S.; Pavoni, B.; Maro;I, L. Toxcol. Environ. Chem. 1994, 45, 1221.
    54. (a) Ashby, E.C. Acc. Chem. Res. 1988, 21, 414. (b) Chanon, M.; Tobe, M. L. Angew. Chem., Int. Ed. Engl. 1982, 21, 1. (c) Pross, A. Acc. Chem. Res. 1985, 18, 212. (d) Chanon, M. Acc. Chem. Res. 1987, 201.
    55. (a) Harring, S. R.; Livinghouse, T. Tetrhedron Lett. 1989, 30, 1499. (b) Barluenga, J.; Fernandez-Simon, J. L.; Concellon, J. M.; Yus, M. Synthesis 1988, 234. (c) Komatsu, K.; Nishinaga, T.; Aonuma, S.; Hirosawa, C.;Takeuchi, K.; Lindner, H. J. Tetrahedron Lett. 1911, 32, 6767. (d) Kondo, Y.; Muraata, N.; Sakamoto, T. Heterocycles 1994, 37, 1467. (e) Guijaro, A.;Yus, M. Tetrahedron 1994, 50, 13269. (f) Guijaro, A.; Romon, D. J.; Yus, M. Tetrahedron 1993, 49, 469.
    56. Guijaro, A.;Yus, M. Tetrahedron 1994, 50, 3447.
    57. Agawa, T.; Ishida, M.; Ohshiro, Y. Synthesis 1980, 933.
    58. Pradhan, S. K.; Radhakrishnan, T. V.; Subramanian, R. J. Org. Chem. 1976, 41, 1943.
    59. (a) Bartmann, E. Angew. Chem., Int. Ed. Engl. 1986, 25, 653. (b) Almena, J.; Foubeo, F.; Yus, M. J. Org. Chem. 1994, 59, 3210.
    60. Philips, K. D.; Horwitz, J. P. J. Org. Chem. 1975, 40, 1856.
    61. (a) Rieke, R. D.; Dawson, B. T.; Stack, D. E.; Stinn, D. E. Synth. Commun. 1990, 20, 2711. (b) Jutzi, P.; Hielscher, B. Organometallics 1986, 5, 1201.
    62. (a) rychnovsky, S. D.; Swenson, S. S. J. Org. Chem. 1997, 62, 1333. (b) Malassene, R.; Vanquelef, E.; Toupet, L.; Hurvois, J. P.; Moinet, C. Org. Biomol. Chem. 2003, 1, 547. (c) Savoia, D.; Taglivini, E.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. 1980, 45, 3227. (d) Shono, T.; terauchi, J. Kitayama, K., Takeshima, Y. I.; Matsumura, Y. Tetrahedron 1992, 48, 8253. (e) Kang, H. Y.; Hong, W. S.; Cho, Y. S.; Koh, H. Y. Tetrahedron Lett. 1995, 36, 7661. (f) Black, D. St. C.; Doyle, J. E. Aust. J. Chem. 1978, 31, 2323. (g) E. E. van Tamelen,; Bjorklund, C.; Rudler, H. J. Am. Chem. Soc. 1971, 93, 7113.
    63. Shia, K. S.; Chang, N. Y.; Yip, J.; Liu, H. J. Tetrahedron Lett. 1998, 39, 4183.
    64. Liu, H. J.; Shia, K. S.; Zhu, J. L. Tetrahedron Lett. 1997, 38, 7713.
    65. Master's thesis of Chia-liang, National Tsing Hua University, 1999.
    66. Master's thesis of Xie Wan-ping, National Tsing Hua University, 2001.
    67. Liu, H. J.; Ly, T. W.; Tai, C. L.; Wu, J. D.; Ling, J. K.; Guo, J. C.; Tseng, N, W.; Shia, K. S. Tetrahedron 2003, 59, 1209.
    68. (a) Huang, M. J. Chem. Am. Soc. 1946, 68, 2487. (b) Huang, M. J. Am. Chem.. Soc. 1949, 71, 3301.
    69. Rao, C. G.; Kulkarni, S. U.; Brown, H. C. J. Organometal. Chem. 1979, 172, C20. Brown, H. C.; Kulkarni, S. U.; Rao, C. G. Synthesis 1980, 151.
    70. (a) Staudinger, H. Die Ketene, F. Enke, Stuttgart, 1912. (b) Yamabe,S.; Tatsuo, D. J. Am. Chem. Soc. 1996, 118, 6518.
    71. Ruden, R. A.; Bonjouklian, R. J. Org. Chem. 1997, 78, 2473.
    72. Ph.D. thesis of Cao Jing bo, National Tsing Hua University, 2005.
    73. Kreiser, W.; Haumesser, W.; Thomas, A. F. Helv. Chem. Acta. 1974, 57, 164.
    74. Onaka, M.; Hashimoto, N.; Yamasaki, R.; Kitaba, Y. Chem. Lett. 2002, 166.
    75. Ph.D. thesis of Toru Guo, National Tsing Hua University, 2006.
    76. Ji, Y.; Trenkle, W. C.; Vowles, J. V. Org. Lett. 2006, 8, 1161.
    77. Liu, H. J.; Shia, K. S.; Han, Y.; Wang, Y. Synlett 1995, 545.
    78. Prajapati, D.; Lekhok, K. C.; Sandhu, T. S.; Ghosh, A. C. J. Chem. Soc., Perkin Trans. 1 1996, 1.
    79 Qi, S.; Xiang, S. L.; Mei, G. Z.; Ming, C. T.; Tao, L. R. Chines Journal of Chemistry 2005, 23, 745.
    80. Hayashi, Y.; Yamguchi, J.; Shoji, M. Tetrahedron 2002, 58, 9839.
    81. Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042
    82. Vincett, P. S.; Barlow, W. A.; Hann, R. A.; Roberts, G. A. Thin Solid Films 1982, 94, 476.
    83. Tang,C.W.; VanSlyke, S.A. Appl. Phys. Lett. 1987, 51, 913.
    84. Tang,C.W.; VanSlyke, S.A.; Chen, C.H. J. Appl. Phys. 1989, 65, 3610.
    85. Nakayama, T. ; Itoh, Y.; Kakuta, A. Appl. Phys. Lett. 1993, 63, 595.
    86. Hiramoto, M.; Tani, J.; Yokoyama, M. Appl. Phys. Lett. 1993, 62, 666.
    87. Ohmori, Y.; Fujii, A.; Uchida, M.; Morishima, C.; Yoshino, K. Appl. Phys. Lett. 1993, 63, 1871.
    88. Hosokawa, C.; Higashi, H.; Kusumoto,T. Appl. Phys. Lett. 1993, 62,
    3238.
    89. Curioni, A. Andreoni, W. J. Am. Chem. Soc. 1999, 121, 8216.
    90. Sugimoto, M.; Anzai, M.; Sakanoue, K.; Sakaki, S. Apply. Phys. Lett. 2001, 79, 2348.
    91. Kido, J.; Iizumi, Y. Chem. Lett. 1997, 963.
    92. Ballardini, P.; Varani G.; Indelli, M. T.; Scandola, F. Inorg. Chem. 1986, 25, 3858.
    93. Sapochak, L. S.; Padmaperuma, A.; Washton, N.; Endrino, F.; Schmett, G. T.; Marshall, J.; Fogarty, D.; Burrows, P. E.; Forrest, S. R. J. Am. Chem. Soc. 2001, 123, 6300.
    94. Han, Y. K.; Lee, S. U. Chem. Phy. Lett. 2002, 366, 9.
    95. Li, H.; Zhang, F.; Wang, Y.; Zheng, D. Mater. Sci. Eng. B 2003, 100, 40.
    96 Pohl, R.; Montes, V. A.; Shinar, J.; Anzenbacher Jr., P. J. Org. Chem. 2004, 69, 1723.
    97. Shi, Y. W.; Shi, M. M; Huang, J. C.; Chen, H. Z.; Wang, M.; Liu, X. D.; Ma, Y. G.; Xu, H.; Yang, B. Chem. Cmmun., 2006, 1941.
    98. Sugimoto, M.; Sakaki, S.; Sakanoue, K.; Newton M. D. Apply. Phys. Lett. 2001, 90, 6092.
    99. Ph. D thesis of Yi Hsuan She National Tsing Hua University, 2006.
    100. Prasad, R.; Coffer, H. L. D.; Fernando, Q.; Freiser, H. J. Org. Chem. 1965, 30, 1251.
    101. Skraup, Z. H. Ber. 1880, 13, 2086.
    102. Cheng, J. A.; Chen, C. H.; Lia, C. H. Chem. Mater. 2004, 16, 2862.
    103. Rodrigues, J. A. R.; Siqueira-Filho, E. P.; Mancilha, M.; Moran, P. J. S. Synth. Commun. 2003, 33, 331.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE