研究生: |
賴俊傑 Lai, Jun-Jie |
---|---|
論文名稱: |
基於觀測器的強健攻擊容忍追蹤控制策略對於有時變延遲和數據包丟失的非線性離散時間網路控制系統 Robust Attack-Tolerant Observer-based Tracking Control Strategy of Nonlinear Discrete-Time Networked Control System with Time-Varying Delay and Data Packet Dropout |
指導教授: |
陳博現
Chen, Bor-Sen |
口試委員: |
許健平
Sheu, Jang-Ping 李征衛 Li, Cheng-Wei 吳建鋒 Wu, Chien-feng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 網路控制系統 、離散平滑動態模型 、最佳化控制 、追蹤控制 、全局線性化內插技術 |
外文關鍵詞: | network control system, discrete-time smoothed dynamic model,, optimal control, tracking control, global linearization interpolation technique |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這項研究中,針對有時變延遲和數據包丟失的非線性離散時間網絡控制系統提出了一種基於觀測器的強健H_∞攻擊容忍追蹤控制策略。除此之外,基於觀測器的強健H_∞攻擊容忍追蹤控制策略對於非線性離散時間網路控制系統的設計過程中,考慮了不可用的外部干擾、測量誤差、網絡引起的時變延遲和數據包丟失。為了減輕追踪控制過程產生的巨大計算負擔,我們將網絡控制系統連接到遠程工作站,以便遠程計算機可以計算複雜的追踪控制命令。通過使用離散時間的平滑動態模型,可以將傳感器和執行器上的惡意攻擊信號嵌入非線性離散時間網路控制系統中,避免它們的損壞並方便地進行估計。因此,可以通過傳統的Luenberger觀察器同時估計系統狀態和惡意攻擊信號。為了同時消除不可用的外部干擾、測量誤差、網絡引起的時變延遲、數據包丟失和惡意攻擊對狀態估計和追踪性能的不良影響,一種基於觀測器的強健H_∞攻擊容忍追蹤控制策略引入非線性離散時間網路控制系統。利用Lyapunov函數的特點,基於觀測器的強健H_∞攻擊容忍追蹤控制策略需要解決一個非常複雜的非線性離散時間 Hamilton-Jacobi 不等式(HJI)。。由於非線性離散時間HJI不易解析或數值求解,因此採用全局線性化插值技術,通過一組局部線性化系統對非線性離散時間網路控制系統進行插值,使得這些非線性離散時間HJI被轉換為一組線性矩陣不等式,可以通過 MATLAB LMI TOOLBOX 輕鬆解決。最後,提供了一種名為Penguin BE飛行器的無人機在惡意的傳感器攻擊和執行器攻擊下的追蹤控制,以驗證所提方法的有效性。
In this study, a robust H_∞ attack-tolerant observer-based tracking control strategy is proposed for the nonlinear discrete-time networked control system (NCS). Further, unavailable external disturbance, measurement noise, network-induced time-varying delay, and data packet dropout are taken into account in the design procedure of the robust H_∞ observer-based reference tracking control strategy of the nonlinear discrete-time NCS. In order to alleviate the huge computational burden generated by the tracking control process, we connect the NCS to the remote workstation so that complex tracking control commands can be calculated by the remote computer. By using the discrete-time smoothed dynamic model, the malicious attack signals on the sensor and actuator can be embedded in nonlinear discrete-time NCS to avoid their corruption and be conveniently estimated. Thus, the system state and the malicious attack signals can be simultaneously estimated through a conventional Luenberger observer. In order to eliminate the bad effects of unavailable external disturbance, measurement noise, network-induced time-varying delay, data packet dropout, and malicious attack on the state estimation and reference tracking performance simultaneously, a robust H_∞ attack-tolerant observer-based reference tracking control strategy is introduced to the nonlinear discrete-time NCS. By utilizing the characteristic of Lyapunov function, the robust H_∞ attack-tolerant observer-based reference tracking control strategy needs to solve a very complex nonlinear discrete-time Hamilton--Jacobi inequality (HJI). Since the nonlinear discrete-time HJI is not easy to be solved analytically or numerically, the global linearization interpolation technique is employed to interpolate the nonlinear discrete-time NCS by a set of local linearized systems so that the nonlinear discrete-time HJI is converted to a set of linear matrix inequalities (LMIs) which can be easily solved by the MATLAB LMI TOOLBOX. Finally, a reference tracking control of an unmanned aerial vehicle (UAV) named Penguin BE aircraft discrete-time NCS under malicious sensor and actuator attacks is provided to validate the effectiveness of the proposed method.
[1] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems: The next computing revolution,” Proc. Design Automat. Conf., Anaheim, CA, USA, pp. 731-736, Jun. 2010 [2] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of Things for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22-32, Feb. 2014.
[3] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial communication: Automation networks in the era of the Internet of Things and industry 4.0,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17-27, Mar. 2017.
[4] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646, Oct. 2016.
[5] L. Chettri and R. Bera, “A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16–32, Jan. 2020.
[6] W. C. Cheng, X. Zhang, and H. L. Zhang, “Statistical-QoS driven energy-efficiency optimization over green 5G mobile wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 12, pp 3092–3107, Dec. 2016.
[7] M. Li and Y. Chen, ”Robust Tracking Control of Networked Control Systems With Communication Constraints and External Disturbance,” IEEE Transactions on Industrial Electronics, vol. 64, no. 5, pp. 4037-4047, May 2017.
[8] X. Zhang et al., ”Networked control systems: a survey of trends and techniques,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 1, pp. 1-17, January 2020.
[9] L. Qiu, Y. Shi, F. Yao, G. Xu, and B. Xu, ”Network-Based Robust H2= H1 Control for Linear Systems With Two-Channel Random Packet Dropouts and Time Delays,” IEEE Transactions on Cybernetics, vol. 45, no. 8, pp. 1450-1462, Aug. 2015.
[10] Y. Shi, and B. Yu, “Output feedback stabilization of networked control systems with random delays modeled by Markov chains,” IEEE Trans. on Automatic Control, vol. 54, no. 7, pp. 1668-1674, Jul. 2009.
[11] G. P. Liu, Y. Xia, D. Rees, and W. Hu, “Design and stability criteria of networked predictive control systems With random network delay in the feedback channel,” IEEE Trans. on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 2, pp. 173-184, Mar. 2007.
[12] H. Gao, and T. Chen, “Network-based H1 output tracking control,” IEEE Trans. on Automatic Control, vol. 53, no. 3, pp. 655-667, Apr. 2008.
[13] B. Xue, S. Li, and Q. Zhu, “Moving horizon state estimation for networked control systems with multiple packet dropouts,” IEEE Trans. on Automatic Control, vol. 57, no. 9, pp. 2360-2366, Sep. 2012.
[14] R. Lu, Y. Xu, and R. Zhang, “A new design of model predictive tracking control for networked control system under random packet loss and uncertainties,” IEEE Trans. on Industrial Electronics, vol. 63, no. 11, pp. 6999-7007, Nov. 2016.
[15] B. Genge, P. Haller, and I. Kiss, “Cyber-security-aware network design of industrial control systems,” IEEE Systems
Journal, vol. 11, no. 3, pp. 1373-1384, Sep. 2017.
[16] H. Zhang, P. Cheng, L. Shi, and J. Chen, “Optimal DoS attack scheduling in wireless networked control system,” IEEE
Trans. on Control Systems Technology, vol. 24, no. 3, pp. 843-852, May 2016.
[17] N. Liu, J. Zhang, H. Zhang, and W. Liu, “Security assessment for communication networks of power control systems
using attack graph and MCDM,” IEEE Trans. on Power Delivery, vol. 25, no. 3, pp. 1492-1500, Jul. 2010.
[18] H. Yang, and S. Yin, “Descriptor observers design for Markov jump systems with simultaneous sensor and actuator faults,”
IEEE Trans. on Automatic Control, vol. 64, no. 8, pp. 3370-3377, Aug. 2019.
[19] Q. Jia, W. Chen, Y. Zhang, and H. Li, “Fault reconstruction and fault-tolerant control via learning observers in Takagi–
Sugeno fuzzy descriptor systems with time delays,” IEEE Trans. on Industrial Electronics, vol. 62, no. 6, pp. 3885-3895,
Jun. 2015.
[20] Z. Gao, and S. X. Ding, “Fault estimation and fault-tolerant control for descriptor systems via proportional, multiple-integral
and derivative observer design,” IET Control Theory & Applications, vol. 1, no. 5, pp. 1208-1218, Sep. 2007.
[21] M. -Y. Lee, H. Chiu and B. -S. Chen, “Networked Security Observer-Based Reference Tracking Control of Stochastic
Quadrotor UAV System Under Cyber-Attack:T-S Fuzzy Approach,” IEEE Access, vol. 10, pp. 30296-30322, 2022.
[22] M. -Y. Lee and B. -S. Chen, “Robust H1 Network Observer-Based Attack-Tolerant Path Tracking Control of Autonomous
Ground Vehicle,” IEEE Access, vol. 10, pp. 58332-58353, 2022.
[23] B. -S. Chen, M. -Y. Lee and X. -H. Chen, ”Security-Enhanced Filter Design for Stochastic Systems under Malicious Attack
via Smoothed Signal Model and Multiobjective Estimation Method,” IEEE Transactions on Signal Processing, vol. 68, pp.
4971-4986, 2020.
[24] B. Chen, W. Chen and H. Wu, ”Robust H2= H1 Global Linearization Filter Design for Nonlinear Stochastic Systems,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 7, pp. 1441-1454, July 2009.
[25] T. Kinoshita and F. Imado, ”The Application of an UAV Flight Simulator - The Development of a New Point Mass Model
for an Aircraft,” 2006 SICE-ICASE International Joint Conference, 2006.
[26] A. Bhar, M. Sayadi, and F. Fnaiech, ”Improved modular UAV autopilot simulator for Pinguin BE aircraft,” 2017
International Conference on Control, Automation and Diagnosis (ICCAD), 2017.
[27] C. S. Tseng, “Model reference output feedback fuzzy tracking control design for nonlinear discrete-time systems with
time-delay,” IEEE Trans. on Fuzzy Systems, vol. 14, no. 1, pp. 58-70, Feb. 2006.
[28] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory.
Philadelphia, PA, USA: SIAM, 1994.
[29] B. S. Chen, and C. F. Wu, “Robust scheduling filter design for a class of nonlinear stochastic Poisson signal systems,”
IEEE Trans. on Signal Processing, vol. 63, no. 23, pp. 6245-6257, Dec.1, 2015.
[30] B. -S. Chen, W. -Y. Chen, C. -T. Yang and Z. Yan, “Noncooperative Game Strategy in Cyber-Financial Systems With
Wiener and Poisson Random Fluctuations: LMIs-Constrained MOEA Approach,” IEEE Transactions on Cybernetics, vol.
48, no. 12, pp. 3323-3336, Dec. 2018.
[31] S. X. Du, A. Dekka, and B. Wu, Modular Multilevel Converters: Analysis, Control, and Applications. Hoboken, NJ, USA:
Wiley-IEEE Press, Jan. 2018.
[32] W. Zhang, L. Xie and B. S. Chen, Stochastic H2= H1: Nash Game Approach. CRC press, 2015.