簡易檢索 / 詳目顯示

研究生: 柯孟綜
論文名稱: 耐火矽化物奈米線與過渡金屬氧化物奈米線之電性研究
Electrical characterization of refractory silicides and transition metal oxide nanowires
指導教授: 周立人
Li-Jen Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 58
中文關鍵詞: 耐火矽化物過渡金屬氧化物奈米線電性研究
外文關鍵詞: refractory silicides, transition metal oxide, nanowire, electrical characterization
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,我們針對了耐火性鉭矽化物奈米線以及過渡性金屬氧化物奈米線進行了電性的量測與結果探討。在鉭矽化物奈米線的電性量測中,首先藉由兩點探針的量測方式來求得此奈米線的電壓-電流特性,但是量測的結果發現,由於接觸電阻的影響,兩點探針的量測方式並不能真正求得奈米線本身的電阻值。為了降低甚至排除接觸電阻的影響,我們朝著兩個方向來著手。第一,以四點探針的量測方式來取代兩點探針的量測;第二,試著增加接觸電極的寬度以期待接觸電阻的降低。結果顯示,在進行四點探針的量測時,當任何一根電極的接觸電阻與其他電極相差太大時,四點探針的方式亦難以量測出奈米線的電壓-電流特性曲線。因此在實驗的過程中,我們另以三點探針的量測方式來取代四點探針,並探討其中的差異性。此外,在第二種方法中,從實驗中觀察到接觸電極的線寬與兩點探針量測的電阻值並沒有任何的依存關係。於此,我們認為有機溶劑在奈米線表面的污染與殘留是造成不同元件間接觸電阻差異的主因。因此,對於另一種可以降低接觸電阻的方式-快速熱退火處理-也在本研究中加以運用與探討。另一方面,對於鉭矽化物奈米線的低溫電阻量測,證實了此奈米線具有金屬的傳輸特性,這項結果符合了理論上的預期。最後,經由量測鉭矽化物奈米線可承受的最大電流極限,我們觀察到此奈米線可承受的電流密度高達3×108 A cm-2,足以與奈米碳管匹敵,並且提供了新世代奈米元件間作為連結材料的新選擇。
    在過渡性金屬氧化物奈米線的量測中,量測的對象是針對氧化鎢奈米線與氧化鐵奈米線。由於它們皆屬於半導體材料,因此它們的場效特性是令人期待的。在氧化鎢奈米線的量測中,使用的接觸電極材料包括了鉻、鈦、金、鎳,但是我們從量測出來的電壓-電流曲線發現,這些材料皆無法與此奈米線形成良成好的歐姆接觸。而在閘極電壓的施加下,也並沒有出現任何的場效特性。另外在真空與大氣環境下的電阻值量測,亦無出現因氧氣的表面吸附而造成電阻上的差異。因此,我們猜測這可能由於氧化鎢奈米線具有相當高的功函數以及能隙所致,在電性表現上比較接近於本質的半導體行為。
    另外對於氧化鐵奈米線的電性量測結果顯示,在閘極電壓的施加下,其電壓-電流曲線呈現了明顯的n型場效特性行為,這對於未來的功能性奈米元件的發展是相當有潛力的,但由於量測的結果中電流出現不穩定的震盪行為,我們很難加以分析出相關的數值(載子移動率、載子濃度)。另一方面,在真空量測的部分,我們觀察到氧化鐵奈米線的電阻值與大氣量測下做比較,明顯下降了許多。這也證明說氧化鐵奈米線具有優異的感測性質。由於在試片準備上遇到較大的困難,因此並沒有太多的量測數據可供比較。在此僅提供初步的量測來證明氧化鐵奈米線具有相當看好的應用潛力。


    In first part of the experiments, we carry out a series of electrical measurements and discussions on the TaSi2 nanowires. In this research, we get a large discrepancy in the two-probe measured resistance from various two-probe devices. In general, a total resistance containing both of the contact resistance and the wire resistance is measured by the two-probe technique. In order to avoid the influence by contact resistance, we solve the problem in two directions. First, the four-probe measurement technique is utilized to get real resistance of the TaSi2 nanowires itself. Second, we want to reduce the effects of contact resistance by increasing the width of contact electrode. But in this part, the measured two-probe resistance doesn’t show much dependence on different contact electrode width. Hence, we suspect that this may be caused by the residual solvent contaminants on the nanowires before metal deposition. On the other hand, I-V measurement at different temperatures (T<300K) reveals the TaSi2 nanowire with a residual resistance at very low temperature exhibits a classical metallic behavior. Finally, we find the TaSi2 nanowire can bear a high current density of 3×108 A/cm2 before failure through the melting test. The result indicates that TaSi2 nanowire may be a promising candidate for the next generation nano-device interconnecting application.
    In the second part, tungsten oxide and iron oxide nanowires are studied. Due to their semiconducting nature, we are interested in the exploration of their field effect characteristics. In the measurement of tungsten oxide nanowires, we don’t find a proper ohmic contact metal in the available materials. In addition, no field effect appears when applying high gate voltage from +20 volt to -20 volt. By exploring its surface chemistry behavior, the resistance of WO3 nanowire is not changed when measuring in the air and in the high vacuum environment. This is different from the behavior exhibits in the Fe2O3 nanowires. On the other hand, due to the semiconducting property of the Fe2O3 nanowire, it has the potential application in the nano-scale field effect transistor. But due to the difficulty in sample preparation, there are not much data to express in this study.

    Chapter 1 Introduction..................................1 1-1 Introduction of nanotechnology....................1 1-2 Introduction of silicides.........................3 1-2-1 TaSi2 nanowires...................................6 1-3 Introduction of metal oxide materials.............7 1-3-1 WO3 nanowires.....................................11 1-3-2 Fe2O3 nanowires...................................12 1-4 Introduction of electrical measurements on nanowires.........................................13 1-5 Motivation........................................15 Chapter 2 Experimental Procedures.......................17 2-1 Chip cleaning and sample preparation..............18 2-2 Locating positions of nanowires...................18 2-3 Defining the contact electrodes and side-gate electrodes........................................19 2-4 Photoresist spin coating and soft baking..........19 2-5 Electron beam lithography.........................19 2-6 Development.......................................20 2-7 Thermal evaporation...............................20 2-8 Lift off process..................................21 2-9 Device evaluation.................................21 2-10 I-V measurement...................................21 Chapter 3 Results and Discussion........................23 Part 1 TaSi2-Ni doped nanowires 3-1 I-V measurements at room temperature..............23 3-2 Analysis of four-probe measurement................26 3-3 I-V measurements at different temperatures (T<300K)..........................................28 3-4 Effect of different contact electrode width.......32 3-5 Annealing effect on the contact resistance........35 3-6 Melting test of the TaSi2-Ni doped nanowires......36 Part 2 WO3 and Fe2O3 nanowires 3-7 I-V measurements of WO3 and Fe2O3 nanowires at room temperature.......................................38 3-8 Effect of various contact electrode materials on WO3 nanowires.........................................40 3-9 Vacuum effect on I-V measurements of WO3 and Fe2O3 nanowires.........................................43 Chapter 4 Summary and Conclusions.......................45 Reference ................................................47 Figure captions..........................................54 Tables...................................................58

    Chapter 1
    [1] Z. L. Wang, “Characterization of Nanophase Materials,” (2000)
    [2] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium Nitride Nanowires and Nanodevices,” Nano Lett., 2, p101 (2002)
    [3] K. L.Wang, S. Tong and H. J. Kim, “Properties and Applications of SiGe Nanodots,” Material Science in Semiconductor Processing, 8, p389 (2005)
    [4] T. I. Kamins, K. L. Wang, and G. E. Davis, “SiGe/Si Supperlattices on Implanted Buried-oxide Structures,” J. Appl. Phys., 65, p1505 (1989)
    [5] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Advanced Materials, 13, p113 (2001)
    [6] E. Bengu, L. D. Marks, “Single-Walled BN Nanostructures,” Phys. Rev. Lett., 86, p2385 (2001)
    [7] R. Tenne, M. Homyonfer, Y. Feldman, “Nanoparticles of Layered Compounds with Hollow Cage Structures,” Chem. Mater., 10, p3225 (1998)
    [8] H. J. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan, C. M. Lieber, “Synthesis and Characterization of Carbide Nanorods,” Nature, 375, p769 (1995)
    [9] Z. W. Pan, Z. R. Dai, Z. L. Wnag, “Nanobelts of Semiconducting Oxides,” Science, 291, p1947 (2001)
    [10] H. Gleiter, “Nanostructured Materials: Basic Concepts and Microstructure,” Acta Mater., 48, p1 (2000)
    [11] Matt Law, Hannes Kind, Benjamin Messer, Franklin Kim, Peidong Yang, “Photochemical Sensing of NO2 with SnO2 Nanoribbon Nanosensors at Room Temperature,” Angewandte Chemie International Edition, 41, p2405 (2002)
    [12] Joong Hee Nam, Won Ki Kim, Sang Jin Park, “Synthesis of Nanocrystalline Ni Ferrite as a Superparamagnetic Material,” Physica Satus Solidi, 201, p1838, (2004)
    [13] The International Technology Roadmap for Semiconductors,
    http://public.itrs.net
    [14] Paui S. Peercy, “The Drive to Miniaturization,” Nature, 406, p1023 (2000)
    [15] Kuniyoshi Yoshikawa, “Technology Requirements for Next Decade Flash Memories,” ESSDERC, p11 (2000)
    [16] F. Lime, R. Clerc, G. Ghibaudo, G. Pananakakis, G. Guegan, “Impact of Gate Tunneling Leakage on the Operation of NMOS Transistors with Ultra-Thin Gate Oxides,” Microelectronic Engineering, 59, p119 (2001)
    [17] J.P. Gambino, E.G. Colgan, “Silicides and Ohmic Contacts,” Materials Chemistry and Physics 52, p99 (1998)
    [18] M. C. Bost, J. E. Mahan, “Optical Properties of Semiconducting Iron Disilicide Thin Film,” J. Appl. Phys. (USA), 58, p2696 (1985)
    [19] J. C. Hensel, R. T. Tung, J. M. Poate, F. C. Unterwald, “Electrical Transport Properties of CoSi2 and NiSi2 Thin Films,” Appl. Phys. Lett., 44, p913 (1984)
    [20] C. A. Dimitriadis, J. H. Werner, S. Logothetidis, M. Stutzmann, J. Weber, and R. Nesper, “Electronic Properties of Semiconducting FeSi2 Film,” J. Appl. Phys., 68, p1726 (1990)
    [21] C. T. Chuang, M. Arienzo, D. D. Tang, and R. D. Isaac, “Schottky Barrier Diode with Self-Aligned Floating Guard Ring,” IEEE Trans. Electron Devices, ED-31, p1482 (1984)
    [22] J. B. Lasky, J. S. NoKos, O. J. Cain, and P. J. Geiss, “Comparison of Transformation to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2,” IEEE Trans. Electron Devices ED-38, p262 (1991)
    [23] C. A. Decker, R. Solanki, J. L. Freeouf, and J. R. Carruthers, “Directed Growth of Nickel Silicide Nanowires,” Appl. Phys. Lett., 84, 1389 (2004)
    [24] Yue Wu, Jie Xiang, Chen Yang, Wei Lu, C. M. Lieber, “Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures,” Nature, 430, p61 (2004)
    [25] L. Ottaviano, L. Lozzi, M. Passacantando, S. Santucci, “On the Spatially Resolved Electronic Structure of Polycrystalline WO3 Films with Scanning Tunneling Spectroscopy,” Surface Science, 475, p73 (2001)
    [26] R. Le Bihan, C. Vacherand, Croissance Composes, Miner. Monocrist. 2, p147 (1969)
    [27] E. Salje, K. Viswanathan, “Physical Properties and Phase Transitions in WO3,” Acta Crystallogr. A, 31, p356 (1975)
    [28] C. G. Granqvist, “Electrochromic Tungsten Oxide Films: Review of Progress,” Sol. Energy Mat Sol. Cells, 60, p201 (2000)
    [29] I. Turyan, U. O. Krasovec, B. Orel, T. Saraidorov, R. Reisfeld, D. Mandler, “Writing-Reading-Erasing on Tungsten Oxide Films Using the Scanning Electrochemical Microscope,” Adv. Mater., 12, p330 (2000)
    [30] W. M. Qu, W. Wlodarski, “A Thin-Film Sensing Element for Ozone, Humidity and Temperature,” Sens. Actuators B, 64, p42 (2000)
    [31] H. Meixner, U. Lampe, “Metal Oxide Sensors,” Sens. Actuators B, 33, p198 (1996)
    [32] S. T. Li and M. S. El-Shall, “Synthesis and Characterization of Photochromic Molybdenum and Tungsten Oxide Nanoparticles,” Naostructure Material, 12, p215 (1999)
    [33] Hung Qi, Cuiying Wang, and Jie Liu, “A Simple Method for the Synthesis of Highly Oriented Potassium-Doped Tungsten Oxide Nanowires,” Adv. Mater., 15, p441 (2003)
    [34] Brinda B. Lakshmi, Charles J. Patrissi, and Charles R. Martin, “Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures,” Chem. Mater., 9, p2544 (1997)
    [35] B. C. Satishkumar, A. Govindaraj, Manashi Nath and C. N. R. Rao, “Synthesis of Metal Oxide Nanorods Using Carbon Nanotubes as Templates,” J. Mater. Chem., 10, p2115 (2000)
    [36] Y. W. Liu, X. F. Rui, Y. Y. Fu, H. Zhang, “Synthesis of α-Fe2O3 Nanowire and Its Magnetic Properties,” Journal of Metastable and Nanocrystalline Materials, 23, p243 (2005)
    [37] Riitsu Takagi, Journal of The Physical Society of Japan, 12, p1212 (1957)
    [38] Y. Y. Fu, Jing Chen, Han Zhang, “Synthesis of Fe2O3 Nanowires by Oxidation of Iron,” Chem. Phys. Lett., 350, p491 (2001)
    [39] Y. Y. Fu, R. M. Wang, J. Xu, J. Chen, Y. Yan, A. V. Narlikar, H. Zhang, “Synthesis of Large Arrays of Aligned α-Fe2O3 Nanowires,” Chem. Phys. Lett., 379, p373 (2003)
    [40] A. Aviram and M. A. Ratner, “Molecular Rectifiers,” Chem. Phys. Lett., 29 (1974)
    [41] Joachim C., Gimzewski J. K., Schittler R. R., Chavy C., “Electronic Transparemce of A Single C60 Molecule,” Phys. Rev. Lett., 74, p2102 (1995)
    [42] Trans. S. J. et al., “Individual Single-Wall Carbon Nanotubes as Quantum Wires,” Nature, 386, p474 (1997)
    [43] Shu-Fen Hu, Wei-Zhe Wong, Shiue-Shin Liu et al., “A Silicon Nanowire With a Coulomb Blockade Effect at Room Temperature,” Adv. Mater., 14, p736 (2002)
    [44] Raffaella Calarco, Michel Marso, Thomas Richter et al., “Size-Dependent Photoconductivity in MBE-Grown GaN Nanowires,” Nano letters (2005)
    [45] J. Teresoff, “Contact Resistance of Carbon Nanotubes,” Appl. Phys. Lett., 74, p2122 (1999)
    [46] A. N. Andriotis, M. Menon, and G. E. Froudakis, “Various Bonding Configurations of Transition-Metal Atoms on Carbon Nanotubes: Their Effect on Contact Resistance,” Appl. Phys. Lett., 76, p3890 (2000)
    [47] Y. Zhang, T. Ichihashi, E. Landree, F. Nihey and S. Iijima, “Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods,” Science, 285, p1719 (1999)
    [48] A. Bachtold, M. Henny, C. Terrier, C. Strunk et al, “Contacting Carbon Nanotubes Selectively with Low Ohmic Contacts for Four Probe Electric Measurement,” Appl. Phys. Lett., 73, p274 (1998)
    [49] J. W. G. Wildaer, L. C. Venama, A. G. Rinzler, R. E. Smalley, C. Dekker, “Electronic Structure of Atomically Resolved Carbon Nanotubes,” Nature, 391, p59 (1998)
    [50] A. Bezryadin, C. N. Lau and M. Tinkham, “Quantum Suppression of Superconductivity in Ultrathin Nanowires,” Nature, 404, p971 (2000)
    [51] D. Natelson, R. L. Willett, K. W. West and L. N. Preiffer, “Molecular Scale Metal Wires,” Solid State Commun., 115, p269, (2000)
    [52] Jorg Muster, Gyu Tae Kim, Vojislav Krstic et al., “Electrical Transport Through Individual Vanadium Pentoxide Nanowires,” Adv. Mater., 12, p420 (2000)

    Chapter 3
    [1] Daihua Zhang, Chao Li, Song Han, Chongwu Zhou et al., “Electronic Transport Studies of Single-Crystalline In2O3 Nanowires,” Appl. Phys. Lett., 82, p112 (2003)
    [2] Jae Ryoung Kim, Hye Mi So, Jong Wan Park, and Ju-Jin Kim, “Electrical Transport Properties of Individual Gallium Nitride Nanowires Synthesized by Chemical Vapor Deposition,” Appl. Phys. Lett., 80, p3548 (2002)
    [3] Y. F. Hsiou, Y. J. Yang, L. Stobinski, Watson Kuo, C. D. Chen, “Controlled Placement and Electrical Contact Properties of Individual Multiwalled Carbon Nanotubes on Patterned Silicon Chips,” Appl. Phys. Lett., 84, p984 (2004)
    [4] Karen Maex and Marc Van Rossum, “Proterties of Metal Silicides,” No.14 Chapter 5, p189 (1995)
    [5] F. Nava, K. N. Tu, E. Mazzega, M. Michelini, G. Queirolo, “Electrical Transport Properties of Transition Metal Dicilicides films,” J. Appl. Phys., 61, p1086 (1987)
    [6] U. Gottlieb, O. Laborde, O. Thomas, A. Rouault, R. Madar, “Some Transport Properties of Single Crystals of Group Va Transition Metal Disilicides,” Appl. Surf. Sci., 53, p247 (1991)
    [7] Jeongo Lee, C. Park, Ju-Jin Kim, Jinhee Kim et al., “Formation of Low Resistance Ohmic Contacts between Carbon Nanotube and Metal Electrodes by A Rapid Thermal Annealing Method,” J. Phys. D: Appl. Phys., 33, p1953 (2000)
    [8] J. S. Hwang, D. Ahn, S. H. Hong, S. W. Hwang, “Effect of Ti Thickness on Contact Resistance between GaN Nanowires and Ti/Au Electrodes,” Appl. Phys. Lett., 85, p1636 (2004)
    [9] Y. Zhang, T. Ichihashi, E. Landree, F. Nihey and S. Iijima, “Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods,” Science, 285, p1719 (1999)
    [10] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, “Large-Band-Gap SiC, Ⅲ-Ⅴ Nitride, and Ⅱ-Ⅵ ZnSe Based Semiconductor Device Technologies,” J. Appl. Phys., 76, p1363 (1994)
    [11] Yue Wu, Jie Xiang, Chen Yang, Wei Lu, C. M. Lieber, “Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures,” Nature, 430, p61 (2004)
    [12] Z. Yao, C. L. Kane, C. Dekker, “High Field Electrical Transport in Single Wall Carbon Nanotubes,” Phys. Rev. Lett., 84, p2941 (2000)
    [13] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches,” Adv. Mater., 14, p158 (2002)
    [14] Daihua Zhang, Chao Li, Song Han, Chongwu Zhou et al., “Electronic Transport Studies of Single-Crystalline In2O3 Nanowires,” Appl. Phys. Lett., 82, p112 (2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE