簡易檢索 / 詳目顯示

研究生: 張孟華
Meng-Hua Chang
論文名稱: 以馬古勒斯碼與拉瑪紐俊-馬古勒斯碼為基礎所建構的低密度同位元檢查碼
Construction of LDPC Codes from Margulis Codes and Ramanujan-Margulis Codes
指導教授: 呂忠津
Chung-Chin Lu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 65
中文關鍵詞: 低密度同位元檢查碼馬古勒斯碼拉瑪紐俊-馬古勒斯碼蓋勒格代數方法建構
外文關鍵詞: LDPC codes, Margulis codes, Ramanujan-Margulis codes, Gallager, algebraic construction
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 早在六零年代,蓋勒格(Gallager)即在他的論文中提出一種錯誤更正碼,稱為低密度同位元檢查碼(LDPC Codes)。但在接下來的三十年,它被大多數的人遺忘。直到1993年渦輪碼(Turbo Codes)興起後,才開始有更多人對它做詳細的探討與研究,目前它已成為最熱門的錯誤更正碼之一。與已往的錯誤更正碼最大不同的地方在於,之前的碼是著眼在尋找擁有高度組織化及較大的最小距離(minimum distance),相對的它的解碼處會較為簡單。但實際上,隨機尋找的碼會有很高的機率是足夠好的,因此,在蓋勒格的論文中,低密度同位元碼的建構方法是使用隨機方式,只是它的解碼處是使用循環解碼,利用這種方式我們可以得到很好的錯誤更正效果。

    在這篇論文中,我們研究和分析兩種用代數方法所建構出來的低密度同位元檢查碼的效能。它們分別是馬古勒斯碼(Margulis Codes)以及拉瑪紐俊-馬古勒斯碼(Ramanujan-Margulis Codes)。藉著使用隨機尋找的方法,我們可以建構出一種馬古勒斯碼,它相對應的圖形中所擁有最短循環路徑的長度在某些情況下將較原本馬古勒斯論文中所建構的馬古利斯碼長。當傳輸的碼短時,我們建構出的馬古勒斯碼相對之下將擁有更佳的錯誤更正效果。此外,我們還提出藉由以上兩種用代數方法所建造的碼來建構不規則的低密度同位元檢查碼。它們比使用隨機建構的不規則碼有更佳的錯誤更正效果。


    In this thesis, we investigate and analyze the performance of two algebraic constructions
    of low-density parity-check codes. They are Margulis codes [18] and Ramanujan-Margulis
    codes [19], [9], [29]. By a random search method, we obtain Margulis codes with larger girths.
    We also describe a method to construct irregular codes based on these two algebraically
    constructed codes. They have better performance than randomly constructed codes. They
    also outperform PEG codes in low SNR region.

    1 Low-Density Parity-Check Codes 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.2 Gallager's hard-decision decoding algorithm [7] . . . . . . . . . . . . 7 1.4.3 Belief-propagation decoding algorithm: . . . . . . . . . . . . . . . . . 10 2 Margulis Codes and Ramanujan-Margulis Codes Constructions 11 2.1 Margulis codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 Cayley Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 Application to LDPC codes . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Ramanujan-Margulis codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Ramanujan Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Expander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Explicit Construction of Ramanujan Graphs . . . . . . . . . . . . . . 17 2.2.4 An application to LDPC codes . . . . . . . . . . . . . . . . . . . . . 20 3 Other LDPC Code Constructions 22 3.1 Regular LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.1 Gallager's Codes [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.2 Mackay-1A [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.3 Progressive Edge-Growth Tanner Graphs [8] . . . . . . . . . . . . . . 23 3.2 Irregular LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.1 Mackay-2A [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 Luby et. al.'s Method [13] . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.3 Richardson et. al.'s Method [26] . . . . . . . . . . . . . . . . . . . . . 27 3.2.4 Random Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.5 Heuristic Search Method [20] . . . . . . . . . . . . . . . . . . . . . . 28 3.2.6 Progressive Edge-Growth Tanner Graphs [8] . . . . . . . . . . . . . . 29 3.2.7 PEG-Random Method . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Properties of LDPC Codes 30 4.1 Upper Bound for the Girth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Lower Bound for the Minimum Distance of LDPC Codes . . . . . . . . . . . 32 4.3 Concentration and Convergence to the Cycle-Free Case . . . . . . . . . . . . 33 5 Modification to Margulis and Ramanujan-Margulis Codes 35 5.1 Extended Regular Margulis Codes . . . . . . . . . . . . . . . . . . . . . . . . 35 5.2 Irregular Margulis Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.1 Irregular Margulis-A . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.2 Irregular Margulis-B . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.3 Irregular Mar-Random method . . . . . . . . . . . . . . . . . . . . . 37 5.3 Irregular Ramanujan-Margulis Codes . . . . . . . . . . . . . . . . . . . . . . 37 5.3.1 Irregular Raman-Random method . . . . . . . . . . . . . . . . . . . . 37 6 Simulation 38 6.1 Margulis Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.1.1 q=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.1.2 q=7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.1.3 q=11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.1.4 q=13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.2 Ramanujan-Margulis code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2.1 p=5, q=13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2.2 p=5, q=17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7 Conclusion

    [1] C. Berrou, A. Glavieux, and P. Thitimajshima, ”Near Shannon limit error-correcting coding and decoding,” Proc. ICC ’93, pp. 1064-1070, 1993.
    [2] F. Bien, ”Construction of telephone networks by group representations,” Notices of the Amer. Math. Society, no. 1 pp. 5-22, 1989.
    [3] J. T. Coffey and R. M. Goodman. ”Any code of which we cannot think is good.” IEEE. Trans. Inform. Theory, vol. 36, pp. 1453-1461, 1990.
    [4] P. Erd˝os and H. Sachs. ”Regul‥are graphen gegebener taillenweite mit minimaler knotenzahl.”Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, pp. 251-257, 1963.
    [5] G. L. Feng and T. R. N. Rao. ”Decoding algebraic-geometric codes up to the designed minimum distance.” IEEE Trans. Inform. Theory, vol. 39, pp. 37-45, Jan. 1993.
    [6] J. Friedman, ”On the second eigenvalue and random walks in random d-regular graphs,” Combinatorica, vol. 11, pp. 331-362, 1991.
    [7] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.
    [8] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, ”Regular and irregular progressive edgegrowth tanner graphs,” Submitted to IEEE. Trans. Inform. Theory.
    [9] A. Lubotzky, R. Phillips and P. Sarnak, ”Ramanujan graphs,” Combinatorica, vol. 9, pp. 261-277, 1988.
    [10] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann, ”Practical loss-resilient codes,” in Proc. 29th Annu. ACM Symp. Theory of Computing, 1997, pp. 150-159.
    [11] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, ”Analysis of low density codes and improved designs using irregular graphs,” in Proc. 30th Annu. ACM Symp. Theory of Computing, 1998, pp. 249-258.
    [12] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann, ”Practical loss-resilient codes,” IEEE Trans. Inform. Theory, vol.47, pp. 569-584, Feb. 2001.
    [13] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, ”Improved low-density parity-check codes using irregular graph,” IEEE Trans. Inform. Theory, vol. 47, no.2, pp. 585-598, Feb. 2001.
    [14] D. J. Macky, ”Good error-correcting codes based on very sparse matrices,” IEEE. Trans. Inform. Theory, vol. 42, pp. 1710-1722, Nov. 1996.
    [15] D. J. Mackay and R. M. Neal, ”Near Shannon limit performance of low-density paritycheck codes,” Election. Lett., vol. 32, pp. 1645-1646, 1996.
    [16] D. J. Mackay and M. S. Postol, ”Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check codes,” Electronic Notes in Theoretical Science 74, 2003.
    [17] D. Mackay, S.Wilson, and M. Davey, ”Comparison of constructions of irregular Gallager codes,” IEEE Trans. Commun., vol. 47, pp. 1449-1454, Oct. 1999.
    [18] G. A. Margulis, ”Explicit construction of graphs without short cycles and low density codes,” Combinatorica, vol. 2, no. 1, pp. 71-78, 1982.
    [19] G. A. Margulis, ”Explicit group-theorectical constructions of combinatorial schemes and their application to the design of expanders and concentrators,” J. Probl. Inf. Transm. vol. 24, no. 1, pp. 39-46, 1988.
    [20] Y. Mao and A. H. Banihashemi, ”A heuristic search for good low-density parity-check codes at short block lengths,” Proc. ICC’01, pp. 41-44.
    [21] R. J. McEliece. The Theory of Information and Coding: A Mathematical Framework for Communication, Reading, Mass: Addison-Wesley,, 1977.
    [22] M. Morgenstern, ”Existence and explicit construction of q+1 regular Ramanujan graphs for every prime power q,” J. Comb. Theory, ser. B, vol. 62. pp.44-62, 1994.
    [23] M. R. Murty, ”Ramanujan Graph,” J. Ramanujan Math. Soc., no. 1, pp. 1-20, 2003.
    [24] A. Pizer, ”Ramanujan graphs and Hecke operator,” Bulletin of the Amer. Math. Soc., vol. 23(1), pp. 127-137, 1990.
    [25] T. Richardson and R. Urbanke, ”The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47, pp. 599-618, Feb. 2001.
    [26] T. Richardson, A. Shokrollahi, and R. Urbanke, ”Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619-637, Feb. 2001.
    [27] T. Richardsom and R. Urbanke, ”Efficient encoding of low-density parity-check codes,”IEEE Trans. Inform. Theory, vol.47, pp. 638-656, Feb. 2001.
    [28] T. Richardson and R. Urbanke. ”The renaissance of Gallager’s low-density parity-check codes,” IEEE. Comm. Magazine, vol. 41, pp. 126-131, Aug. 2003.
    [29] J. Rosenthal and P. O. Vontobel, ”Constructions of LDPC codes using Ramanujan graphs and ideas from Margulis,” in Proc. of the 38th Annual Allerton Conference on Communication, Control, and Computing, pp. 248-257, Oct. 2000.
    [30] C. E. Shannon. ”A mathematical theory of communication,” Bell Sys. Tech. J., vol. 27, pp. 279-423 and pp. 623-656, 1948.
    [31] M. Sipser and D. Spielman, ”Expander codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 1710-1722, Nov. 1996.
    [32] R. M. Tanner, ”A recursive approach to low complexity codes,” IEEE Trans. Inform. Theory, vol. IT-27, pp. 533-547, Sept. 1981.
    [33] M. A. Tsfasman. ”Algebraic-geometric codes and asymptotic problems.” Discrete Applied Mathematics, vol. 33, pp. 241-256, 1991.
    [34] V. Zyablov and M. Pinsker, ”Estimation of the error-correction complexity of Gallager low-density codes,” Probl. Pered. Inform., vol. 11, pp. 23-26, Jan. 1975.
    [35] —, ”Improved low-density parity-check codes using irregular graphs and belief propagation,”in Proc. 1998 IEEE Int. Symp. Information Theory, Cambridge, MA, Aug. 1998, pp. 117.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE