研究生: |
張恕豪 Chang, Shu-Hao |
---|---|
論文名稱: |
金屬硫族化合物奈米材料之合成與其太陽能電池應用 Synthesis and Photovoltaic Applications of Metal Chalcogenide Nanomaterials |
指導教授: |
段興宇
Tuan, Hsing-Yu |
口試委員: |
周更生
黃暄益 吳文偉 曾院介 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 159 |
中文關鍵詞: | 奈米材料 、金屬硫族化合物 、太陽能電池 |
外文關鍵詞: | Nanomaterials, Metal Chalcogenide, Photovoltaic |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究金屬硫族化合物奈米材料之合成與其太陽能電池之應用。本論文分成四個部分: (1)三元素、四元素、五元素銅銦鎵硫硒(CuIn1-xGax(SySe1-y)2)奈米粒子合成與鑑定分析。(2) 銅鎵硫(CuGaS2) 奈米材料之大小、形狀、與晶體結構之控制。(3) 銅銦鎵硫硒類薄膜太陽能電池製備。(4)二元素金屬硫族奈米化合物米材料於染料敏化太陽能電池之應用。
三元素、四元素、五元素銅銦鎵硫硒合金奈米粒子合成採用熱溶劑升溫法,於高沸點溶劑中反應形成約15~30奈米之合金奈米化合物。此方法有別於熱注射法之合成,可大量生產奈米粒子,且大量生產之奈米粒子無論大小、形狀或光學性質與小量生產皆類似。銅銦鎵硫硒奈米粒子之可藉由改變前驅物的比例,控制奈米粒子之組成同時控制其能階,其大小可介於 0.98 eV~2.40 eV之間。另外,我們提出其理論計算,比較我們以儀器量測出之能階大小與理論計算之能階大小之差異。
銅鎵硫奈米材料可藉由實驗條件的改變,獲得不同大小、形狀與晶相之晶體。搭配粒徑選擇法(size-selection method),不同大小之奈米粒子可被分離。隨著反應物與介面活性劑之不同,我們可以獲得不同晶相與不同形狀之晶體。我們同時藉由改變不同的反應溫度,探討其生長機制。
我們將銅銦鎵硫硒合金奈米粒子以各種常見的濕式塗佈方法,包括刮刀法、滴擲法與噴塗法將奈米粒子塗佈於基板上,並觀察其薄膜品質。最後我們選擇噴塗法將合成之奈米粒子塗佈於鉬玻璃基板上,配合後段製程如硒化、緩衝層製作、與上電極製作等步驟,將此奈米粒子應用於薄膜太陽能電池中。我們目前以五元素銅銦鎵硫硒合金奈米粒子做太陽能電池吸收層,最高效率已超過1.0 %。
二元素金屬硫族化物Co9S8奈米粒子與FeSe2奈米薄片被證明可應用於染料敏化太陽能電池對電極上。藉由非真空塗佈製程,包括噴塗法與電沉積法,金屬硫族化合物可塗佈於電極之上。透過電化學循環伏安法分析,我們可知此兩種材料對於I-/I3-電解液有良好催化性。並將以此兩種材料製備之對電極應用於染料敏化太陽能電池中,並獲得超過7 %轉換效率。
In this dissertation, we describe the synthesis and applications of metal chalcogenide nanocrystals. To give a clear picture of this dissertation, the main contents are summarized as follows: (1) Ternary, quaternary and quinary CuIn1-xGax(SySe1-y)2 nanocrystals were synthesized and investigated. (2) CuGaS2 nanomaterials were prepared with size, morphology and crystal phase control. (3) CuIn1-xGax(SySe1-y)2-based (CIGSSe-based) thin film solar cell preparation. (4) Binary metal chalcogenide nanocrystals for dye-sensitized solar cells (DSSC) applications.
We have developed a heating-up method to synthesize high quality nanocrystals. Using this method, 15~30 nm nanocrystals in oleylamine were synthesized and the quantity could be easily scaled up by this approach. The nanoparticles were analyzed by several instruments. The composition of nanoparticles can be tuned through the change of the element precursor ratios in the synthesis. The colloidal synthesis of quinary nanocrystals with entire composition tuning was achieved and band gap engineering could be tuned in the range from 0.98 eV to 2.40 eV. We have also characterized the band gap energy of CuIn1-xGax(SySe1-y)2 nanoparticles in both experimental and theoretical ways.
Size, shape and crystal phase of CuGaS2 nanomaterials can be manipulated by changing the experimental parameters. With the size-selection approach, different sizes of nanoparticles can be separated. By exploiting different reactants and capping agents, different shapes of nanomaterials were obtained. We also discussed the growth mechanism by changing the reaction temperature at the last part.
A variety of solution-based coating methods, such as spray deposition, dip-coating, and doctor blade coating have been applied for film deposition in this study. The qualities of thin films deposited from different methods were compared. Finally, CuIn1-xGax(SySe1-y)2 nanoparticles were coated on the Mo substrate by spraying deposition. After selenization process, buffer layer deposition, and top electrode sputtering, CuIn1-xGax(SySe1-y)2 nanocrystals as optical absorbing materials for solar cell devices were demonstrated. The devices had the cell efficiency over 1%, proving that these nanoparticles are promising precursors for photovoltaic devices.
Binary metal chalcogenides nanocrystals, Co9S8 and FeSe2, were proved to be the materials of counter electrode for DSSC. Through non-vacuum deposition methods, spray coating and electrophoretic deposition, binary metal chalcogenides nanocrystals can be deposited onto the conductive substrates. According to the analysis of cyclic voltammetry, Co9S8 and FeSe2 have good catalytic ability toward I-/I3- redox reaction. In addition, the DSSC assembled with Co9S8 and FeSe2 counter electrodes were demonstrated and the cell efficiencies of over 7 % were obtained.
Chapter 1
1. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D., A general strategy for nanocrystal synthesis. Nature 2005, 437, 121-124.
2. Bandyopadhyay, A. K.; Bandyopadhyay, A., Nano materials. New Age International: 2008.
3. Fonoberov, V. A.; Pokatilov, E. P.; Balandin, A. A., Exciton states and optical transitions in colloidal CdS quantum dots: Shape and dielectric mismatch effects. Phys Rev B 2002, 66.
4. Chaturvedi, S.; Dave, P. N., Design process for nanomaterials. J Mater Sci 2013, 48, 3605-3622.
5. Murray, C. B.; Kagan, C. R.; Bawendi, M. G., Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 2000, 30, 545-610.
6. Jun, Y. W.; Choi, J. S.; Cheon, J., Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Edit 2006, 45, 3414-3439.
7. Manna, L.; Scher, E. C.; Alivisatos, A. P., Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 2000, 122, 12700-12706.
8. Chang, S.-H.; Chiu, B.-C.; Gao, T.-L.; Jheng, S.-L.; Tuan, H.-Y., Selective synthesis of copper gallium sulfide (CuGaS2) nanostructures of different sizes, crystal phases, and morphologies. Crystengcomm 2014, 16, 3323-3330.
9. Guillemoles, J. F.; Rau, U.; Kronik, L.; Schock, H. W.; Cahen, D., Cu(In,Ga)Se-2 solar cells: Device stability based on chemical flexibility. Adv Mater 1999, 11, 957.
10. Stanbery, B. J., Copper indium selenides and related materials for photovoltaic devices. Crit Rev Solid State 2002, 27, 73-117.
11. Ramanathan, K.; Contreras, M. A.; Perkins, C. L.; Asher, S.; Hasoon, F. S.; Keane, J.; Young, D.; Romero, M.; Metzger, W.; Noufi, R.; Ward, J.; Duda, A., Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog Photovoltaics 2003, 11, 225-230.
12. Hibberd, C. J.; Chassaing, E.; Liu, W.; Mitzi, D. B.; Lincot, D.; Tiwari, A. N., Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers. Prog Photovoltaics 2010, 18, 434-452.
13. Niederberger, M.; Pinna, N., Metal oxide nanoparticles in organic solvents: synthesis, formation, assembly and application. Springer: 2009.
14. Akhavan, V. A.; Goodfellow, B. W.; Panthani, M. G.; Steinhagen, C.; Harvey, T. B.; Stolle, C. J.; Korgel, B. A., Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics. J Solid State Chem 2012, 189, 2-12.
15. Hillhouse, H. W.; Beard, M. C., Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics. Current Opinion in Colloid & Interface Science 2009, 14, 245-259.
16. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (version 39). Progress in photovoltaics: research and applications 2012, 20, 12-20.
Chapter 2
1. Guo, Q. J.; Hillhouse, H. W.; Agrawal, R., Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells. J Am Chem Soc 2009, 131, 11672-+.
2. Hillhouse, H. W.; Beard, M. C., Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics. Curr Opin Colloid In 2009, 14, 245-259.
3. Yuan, M.; Mitzi, D. B.; Gunawan, O.; Kellock, A. J.; Chey, S. J.; Deline, V. R., Antimony assisted low-temperature processing of CuIn1-xGaxSe2-ySy solar cells. Thin Solid Films 2010, 519, 852-856.
4. Choi, J. J.; Wenger, W. N.; Hoffman, R. S.; Lim, Y. F.; Luria, J.; Jasieniak, J.; Marohn, J. A.; Hanrath, T., Solution-Processed Nanocrystal Quantum Dot Tandem Solar Cells. Adv Mater 2011, 23, 3144.
5. Lin, Y. C.; Yen, W. T.; Chen, Y. L.; Wang, L. Q.; Jih, F. W., Influence of annealing temperature on properties of Cu(In,Ga)(Se,S)2 thin films prepared by co-sputtering from quaternary alloy and In2S3 targets. Physica B 2011, 406, 824-830.
6. Bremner, S. P.; Levy, M. Y.; Honsberg, C. B., Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Prog Photovoltaics 2008, 16, 225-233.
7. Eberspacher, C.; Fredric, C.; Pauls, K.; Serra, J., Thin-film CIS alloy PV materials fabricated using non-vacuum, particles-based techniques. Thin Solid Films 2001, 387, 18-22.
8. Alberts, V.; Titus, J.; Birkmire, R. W., Material and device properties of single-phase Cu(In,Ga)(Se,S)2 alloys prepared by selenization/sulfurization of metallic alloys. Thin Solid Films 2004, 451, 207-211.
9. Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A., Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics. J Am Chem Soc 2008, 130, 16770-16777.
10. Guo, Q.; Ford, G. M.; Hillhouse, H. W.; Agrawal, R., Sulfide Nanocrystal Inks for Dense Cu(In1-xGax)(S1-ySey)2 Absorber Films and Their Photovoltaic Performance. Nano Lett 2009, 9, 3060-3065.
11. Jones, P. G.; Ahrens, B., Gold(I) complexes with amine ligands. 3. Competition between auriophilic and hydrogen bonding interactions in dimeric species. New J Chem 1998, 22, 1041-1042.
12. Pan, D. C.; Wang, X. L.; Zhou, Z. H.; Chen, W.; Xu, C. L.; Lu, Y. F., Synthesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps. Chem Mater 2009, 21, 2489-2493.
13. Wang, J. J.; Wang, Y. Q.; Cao, F. F.; Guo, Y. G.; Wan, L. J., Synthesis of Monodispersed Wurtzite Structure CuInSe2 Nanocrystals and Their Application in High-Performance Organic-Inorganic Hybrid Photodetectors. J Am Chem Soc 2010, 132, 12218-12221.
14. Zhong, H. Z.; Zhou, Y.; Ye, M. F.; He, Y. J.; Ye, J. P.; He, C.; Yang, C. H.; Li, Y. F., Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS2 Nanocrystals. Chem Mater 2008, 20, 6434-6443.
15. Sporken, R.; Abuel-Rub, K. M.; Chen, Y. P.; Sivananthan, S., ZnSe/ZnSxSe1-x heterojunction valence band discontinuity measured by x-ray photoelectron spectroscopy. J Electron Mater 1998, 27, 776-781.
16. Mudryi, A. V.; Victorov, I. A.; Gremenok, V. F.; Patuk, A. I.; Shakin, I. A.; Yakushev, M., Optical spectroscopy of chalcopyrite compounds CuInS2, CuInSe2 and their solid solutions. Thin Solid Films 2003, 431, 197-199.
17. Wei, S. H.; Zhang, S. B.; Zunger, A., First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J Appl Phys 2000, 87, 1304-1311.
18. Courtel, F. M.; Paynter, R. W.; Marsan, B.; Morin, M., Synthesis, Characterization, and Growth Mechanism of n-Type CuInS2 Colloidal Particles. Chem Mater 2009, 21, 3752-3762.
19. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D., Handbook of X-ray photoelectron spectroscopy. Perkin Elmer Eden Prairie, MN: 1992; Vol. 40.
20. Chiang, M. Y.; Chang, S. H.; Chen, C. Y.; Yuan, F. W.; Tuan, H. Y., Quaternary Culn(S1-xSex)2 Nanocrystals: Facile Heating-Up Synthesis, Band Gap Tuning, and Gram-Scale Production. J Phys Chem C 2011, 115, 1592-1599.
21. Canava, B.; Vigneron, J.; Etcheberry, A.; Guimard, D.; Grand, P. P.; Guillemoles, J. F.; Lincot, D.; Hamatly, S. O. S.; Djebbour, Z.; Mencaraglia, D., Studies of buried interfaces Cu(In,Ga)Se2/CdS XPS and electrical investigations. Thin Solid Films 2003, 431, 289-295.
22. Suri, D. K.; Nagpal, K. C.; Chadha, G. K., X-Ray Study of CuGaxIn1-xSe2 Solid-Solutions. J Appl Crystallogr 1989, 22, 578-583.
23. Souilah, M.; Lafond, A.; Barreau, N.; Guillot-Deudon, C.; Kessler, J., Evidence for a modified-stannite crystal structure in wide band gap Cu-poor CuIn1-xGaxSe2: Impact on the optical properties. Appl Phys Lett 2008, 92.
24. Souilah, M.; Rocquefelte, X.; Lafond, A.; Guillot-Deudon, C.; Morniroli, J. P.; Kessler, J., Crystal structure re-investigation in wide band gap CIGSe compounds. Thin Solid Films 2009, 517, 2145-2148.
25. Kang, F.; Ao, J. P.; Sun, G. Z.; He, Q.; Sun, Y., Preparation and properties of CuInxGa1-xSe2 thin-film solar cell absorbers from selenization of Ga-rich electrodeposited precursors. Semicond Sci Tech 2009, 24.
26. Zhong, H. Z.; Lo, S. S.; Mirkovic, T.; Li, Y. C.; Ding, Y. Q.; Li, Y. F.; Scholes, G. D., Noninjection Gram-Scale Synthesis of Monodisperse Pyramidal CuInS2 Nanocrystals and Their Size-Dependent Properties. Acs Nano 2010, 4, 5253-5262.
27. Noufi, R.; Powell, R.; Herrington, C.; Coutts, T., Physical-Properties and Photovoltaic Potential of Thin-Film of CuGaSe2. Sol Cells 1986, 17, 303-307.
28. Wei, S. H.; Zunger, A., Band Offsets and Optical Bowings of Chalcopyrites and Zn-Based Ii-Vi Alloys. J Appl Phys 1995, 78, 3846-3856.
29. Luque, A.; Hegedus, S., Handbook of photovoltaic science and engineering. John Wiley & Sons: 2011.
30. Park, J.; An, K. J.; Hwang, Y. S.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 2004, 3, 891-895.
Chapter 3
1. Xu, J.; Lee, C. S.; Tang, Y. B.; Chen, X.; Chen, Z. H.; Zhang, W. J.; Lee, S. T.; Zhang, W. X.; Yang, Z. H., Large-Scale Synthesis and Phase Transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 Core/Shell Nanowire Bundles. Acs Nano 2010, 4, 1845-1850.
2. Devaney, W. E.; Chen, W. S.; Stewart, J. M.; Mickelsen, R. A., Structure and Properties of High-Efficiency ZnO/CdZnS/CuInGaSe2 Solar-Cells. IEEE T Electron Dev 1990, 37, 428-433.
3. Scheer, R.; Walter, T.; Schock, H. W.; Fearheiley, M. L.; Lewerenz, H. J., CulnS2 Based Thin-Film Solar-Cell with 10.2-Percent Efficiency. Appl Phys Lett 1993, 63, 3294-3296.
4. Akhavan, V. A.; Goodfellow, B. W.; Panthani, M. G.; Reid, D. K.; Hellebusch, D. J.; Adachi, T.; Korgel, B. A., Spray-deposited CuInSe2 nanocrystal photovoltaics. Energy & Environmental Science 2010, 3, 1600-1606.
5. Ye, H.; Park, H. S.; Akhavan, V. A.; Goodfellow, B. W.; Panthani, M. G.; Korgel, B. A.; Bard, A. J., Photoelectrochemical Characterization of CuInSe2 and Cu(In1− xGax)Se2 Thin Films for Solar Cells. The Journal of Physical Chemistry C 2010, 115, 234-240.
6. Guo, Q.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.; Stach, E. A.; Agrawal, R.; Hillhouse, H. W., Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano letters 2008, 8, 2982-2987.
7. Guo, Q.; Ford, G. M.; Hillhouse, H. W.; Agrawal, R., Sulfide Nanocrystal Inks for Dense Cu(In1−xGax)(S1−ySey)2 Absorber Films and Their Photovoltaic Performance. Nano letters 2009, 9, 3060-3065.
8. Liu, W.; Mitzi, D. B.; Yuan, M.; Kellock, A. J.; Chey, S. J.; Gunawan, O., 12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process†. Chemistry of Materials 2009, 22, 1010-1014.
9. Xue, M.-Z.; Fu, Z.-W., Electrochemical reactivity mechanism of CuInSe2 with lithium. Thin Solid Films 2008, 516, 8386-8392.
10. Zhang, W.; Zeng, H.; Yang, Z.; Wang, Q., New strategy to the controllable synthesis of CuInS2 hollow nanospheres and their applications in lithium ion batteries. Journal of Solid State Chemistry 2012, 186, 58-63.
11. Hibberd, C. J.; Chassaing, E.; Liu, W.; Mitzi, D. B.; Lincot, D.; Tiwari, A. N., Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers. Prog Photovoltaics 2010, 18, 434-452.
12. Cai, Y. G.; Ho, J. C. W.; Batabyal, S. K.; Liu, W.; Sun, Y.; Mhaisalkar, S. G.; Wong, L. H., Nanoparticle-Induced Grain Growth of Carbon-Free Solution-Processed CuIn(S,Se)2 Solar Cell with 6% Efficiency. Acs Appl Mater Inter 2013, 5, 1533-1537.
13. Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A., Synthesis of CuInS2, CuInSe2, and Cu (In xGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics. Journal of the American Chemical Society 2008, 130, 16770-16777.
14. Akhavan, V. A.; Goodfellow, B. W.; Panthani, M. G.; Steinhagen, C.; Harvey, T. B.; Stolle, C. J.; Korgel, B. A., Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics. Journal of Solid State Chemistry 2012, 189, 2-12.
15. Chang, S.-H.; Lu, M.-D.; Tung, Y.-L.; Tuan, H.-Y., Gram-Scale Synthesis of Catalytic Co9S8 Nanocrystal Ink as a Cathode Material for Spray-Deposited, Large-Area Dye-Sensitized Solar Cells. Acs Nano 2013, 7, 9443-9451.
16. Chun, Y.-G.; Kim, K.-H.; Yoon, K.-H., Synthesis of CuInGaSe2 nanoparticles by solvothermal route. Thin Solid Films 2005, 480, 46-49.
17. Huang, W.-C.; Tseng, C.-H.; Chang, S.-H.; Tuan, H.-Y.; Chiang, C.-C.; Lyu, L.-M.; Huang, M. H., Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application. Langmuir 2012, 28, 8496-8501.
18. Hsu, W. H.; Hsiang, H. I.; Chang, Y. L.; Ray, D. T.; Yen, F. S., Formation Mechanisms of Cu (In0.7Ga0.3) Se2 Nanocrystallites Synthesized Using Hot‐Injection and Heating‐Up Processes. Journal of the American Ceramic Society 2011, 94, 3030-3034.
19. Koo, B.; Patel, R. N.; Korgel, B. A., Wurtzite− Chalcopyrite Polytypism in CuInS2 Nanodisks. Chemistry of Materials 2009, 21, 1962-1966.
20. Chiang, M.-Y.; Chang, S.-H.; Chen, C.-Y.; Yuan, F.-W.; Tuan, H.-Y., Quaternary CuIn (S1− xSex)2 Nanocrystals: Facile Heating-Up Synthesis, Band Gap Tuning, and Gram-Scale Production. The Journal of Physical Chemistry C 2011, 115, 1592-1599.
21. Chang, S.-H.; Chiang, M.-Y.; Chiang, C.-C.; Yuan, F.-W.; Chen, C.-Y.; Chiu, B.-C.; Kao, T.-L.; Lai, C.-H.; Tuan, H.-Y., Facile colloidal synthesis of quinary CuIn1− xGax(SySe1− y)2 (CIGSSe) nanocrystal inks with tunable band gaps for use in low-cost photovoltaics. Energy Environ. Sci. 2011, 4, 4929-4932.
22. Li, Q.; Zhai, L.; Zou, C.; Huang, X.; Zhang, L.; Yang, Y.; Chen, X. a.; Huang, S., Wurtzite CuInS2 and CuInxGa1−xS2 nanoribbons: synthesis, optical and photoelectrical properties. Nanoscale 2013, 5, 1638-1648.
23. Wooten, A. J.; Werder, D. J.; Williams, D. J.; Casson, J. L.; Hollingsworth, J. A., Solution−Liquid−Solid Growth of Ternary Cu−In−Se Semiconductor Nanowires from Multiple- and Single-Source Precursors. Journal of the American Chemical Society 2009, 131, 16177-16188.
24. Kruszynska, M.; Borchert, H.; Bachmatiuk, A.; Rümmeli, M. H.; Büchner, B.; Parisi, J. r.; Kolny-Olesiak, J., Size and Shape Control of Colloidal Copper (I) Sulfide Nanorods. Acs Nano 2012, 6, 5889-5896.
25. Yarema, O.; Bozyigit, D.; Rousseau, I.; Nowack, L.; Yarema, M.; Heiss, W.; Wood, V., Highly Luminescent, Size-and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals. Chemistry of Materials 2013, 25, 3753-3757.
26. Murray, C. B.; Kagan, C. R.; Bawendi, M. G., Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 2000, 30, 545-610.
27. Tao, A. R.; Habas, S.; Yang, P. D., Shape control of colloidal metal nanocrystals. Small 2008, 4, 310-325.
28. Koo, B.; Patel, R. N.; Korgel, B. A., Synthesis of CuInSe2 Nanocrystals with Trigonal Pyramidal Shape. Journal of the American Chemical Society 2009, 131, 3134.
29. Bao, N. Z.; Qiu, X. M.; Wang, Y. H. A.; Zhou, Z. Y.; Lu, X. H.; Grimes, C. A.; Gupta, A., Facile thermolysis synthesis of CuInS2 nanocrystals with tunable anisotropic shape and structure. Chemical Communications 2011, 47, 9441-9443.
30. Coughlan, C.; Singh, A.; Ryan, K. M., Systematic Study into the Synthesis and Shape Development in Colloidal CuInxGa1–xS2 Nanocrystals. Chemistry of Materials 2013.
31. Klimov, V. I., Semiconductor and metal nanocrystals: synthesis and electronic and optical properties. CRC Press: 2003.
32. Cozzoli, P. D.; Manna, L.; Curri, M. L.; Kudera, S.; Giannini, C.; Striccoli, M.; Agostiano, A., Shape and phase control of colloidal ZnSe nanocrystals. Chemistry of Materials 2005, 17, 1296-1306.
33. Nose, K.; Soma, Y.; Omata, T.; Otsuka-Yao-Matsuo, S., Synthesis of Ternary CuInS2 Nanocrystals; Phase Determination by Complex Ligand Species. Chemistry of Materials 2009, 21, 2607-2613.
34. Aldakov, D.; Lefrançois, A.; Reiss, P., Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J. Mater. Chem. C 2013, 1, 3756-3776.
35. Omata, T.; Nose, K.; Otsuka-Yao-Matsuo, S., Size dependent optical band gap of ternary I-III-VI2 semiconductor nanocrystals. Journal of Applied Physics 2009, 105, 073106-073106-5.
36. Zhong, H.; Zhou, Y.; Ye, M.; He, Y.; Ye, J.; He, C.; Yang, C.; Li, Y., Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS2 Nanocrystals. Chemistry of Materials 2008, 20, 6434-6443.
Chapter 4
1. Wagner, S.; Shay, J. L.; Migliora.P; Kasper, H. M., CulnSe2-CdS Heterojunction Photovoltaic Detectors. Appl Phys Lett 1974, 25, 434-435.
2. Rockett, A.; Abouelfotouh, F.; Albin, D.; Bode, M.; Ermer, J.; Klenk, R.; Lommasson, T.; Russell, T. W. F.; Tomlinson, R. D.; Tuttle, J.; Stolt, L.; Walter, T.; Peterson, T. M., Structure and Chemistry of CuInSe2 for Solar-Cell Technology - Current Understanding and Recommendations. Thin Solid Films 1994, 237, 1-11.
3. Jackson, P.; Hariskos, D.; Lotter, E.; Paetel, S.; Wuerz, R.; Menner, R.; Wischmann, W.; Powalla, M., New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog Photovoltaics 2011, 19, 894-897.
4. Mitzi, D. B.; Yuan, M.; Liu, W.; Kellock, A. J.; Chey, S. J.; Deline, V.; Schrott, A. G., A High-Efficiency Solution-Deposited Thin-Film Photovoltaic Device. Adv Mater 2008, 20, 3657.
5. Ahn, S.; Son, T. H.; Cho, A.; Gwak, J.; Yun, J. H.; Shin, K.; Ahn, S. K.; Park, S. H.; Yoon, K., CuInSe2 Thin-Film Solar Cells with 7.72% Efficiency Prepared via Direct Coating of a Metal Salts/Alcohol-Based Precursor Solution. ChemSusChem 2012, 5, 1773-1777.
6. Wang, G.; Wang, S. Y.; Cui, Y.; Pan, D. C., A Novel and Versatile Strategy to Prepare Metal-Organic Molecular Precursor Solutions and Its Application in Cu(In,Ga)(S,Se)2 Solar Cells. Chemistry of Materials 2012, 24, 3993-3997.
7. Akhavan, V. A.; Harvey, T. B.; Stolle, C. J.; Ostrowski, D. P.; Glaz, M. S.; Goodfellow, B. W.; Panthani, M. G.; Reid, D. K.; Vanden Bout, D. A.; Korgel, B. A., Influence of Composition on the Performance of Sintered Cu(In,Ga)Se2 Nanocrystal Thin-Film Photovoltaic Devices. ChemSusChem 2013, 6, 481-486.
8. Guo, Q.; Ford, G. M.; Agrawal, R.; Hillhouse, H. W., Ink formulation and low-temperature incorporation of sodium to yield 12% efficient Cu(In,Ga)(S,Se)2 solar cells from sulfide nanocrystal inks. Progress in Photovoltaics: Research and Applications 2013, 21, 64-71.
9. Jeong, S.; Lee, B.-S.; Ahn, S.; Yoon, K.; Seo, Y.-H.; Choi, Y.; Ryu, B.-H., An 8.2% efficient solution-processed CuInSe2 solar cell based on multiphase CuInSe2 nanoparticles. Energy & Environmental Science 2012, 5, 7539-7542.
10. Lee, J. H.; Chang, J.; Cha, J. H.; Lee, Y.; Han, J. E.; Jung, D. Y.; Choi, E. C.; Hong, B., Large-Scale, Surfactant-Free Solution Syntheses of Cu(In,Ga)(S,Se)2 Nanocrystals for Thin Film Solar Cells. European Journal of Inorganic Chemistry 2011, 647-651.
11. Kind, C.; Feldmann, C.; Quintilla, A.; Ahlswede, E., Citrate-Capped Cu11In9 Nanoparticles and Its Use for Thin-Film Manufacturing of CIS Solar Cells. Chemistry of Materials 2011, 23, 5269-5274.
12. Hsu, W.-T.; Chiang, C.-C.; Chuang, T.-Y.; Cheng, L.-T.; Wang, L.-P.; Chan, S.-W.; Lai, K.-Y.; Chen, W.-C.; Cheng, H.-T.; Li, C.-C. In Flexible and Cd free CIGS solar cell yielding 13.37% efficiency producing by non-vacuum process, Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, IEEE: 2012; pp 002034-002037.
13. Brown, G.; Stone, P.; Woodruff, J.; Cardozo, B.; Jackrel, D. In Device characteristics of a 17.1% efficient solar cell deposited by a non-vacuum printing method on flexible foil, Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, IEEE: 2012; pp 003230-003233.
14. Ahn, S.; Kim, K.; Cho, A.; Gwak, J.; Yun, J. H.; Shin, K.; Ahn, S.; Yoon, K., CuInSe2 (CIS) Thin Films Prepared from Amorphous Cu–In–Se Nanoparticle Precursors for Solar Cell Application. Acs Appl Mater Inter 2012, 4, 1530-1536.
15. Akhavan, V. A.; Goodfellow, B. W.; Panthani, M. G.; Reid, D. K.; Hellebusch, D. J.; Adachi, T.; Korgel, B. A., Spray-deposited CuInSe2 nanocrystal photovoltaics. Energy & Environmental Science 2010, 3, 1600-1606.
16. Akhavan, V. A.; Panthani, M. G.; Goodfellow, B. W.; Reid, D. K.; Korgel, B. A., Thickness-limited performance of CuInSe2 nanocrystal photovoltaic devices. Optics Express 2010, 18, A411-A420.
17. Stolle, C. J.; Panthani, M. G.; Harvey, T. B.; Akhavan, V. A.; Korgel, B. A., Comparison of the Photovoltaic Response of Oleylamine and Inorganic Ligand-Capped CuInSe2 Nanocrystals. Acs Appl Mater Inter 2012, 4, 2757-2761.
18. Kaelin, M.; Rudmann, D.; Kurdesau, F.; Zogg, H.; Meyer, T.; Tiwari, A. N., Low-cost CIGS solar cells by paste coating and selenization. Thin Solid Films 2005, 480, 486-490.
19. Todorov, T. K.; Gunawan, O.; Gokmen, T.; Mitzi, D. B., Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell. Progress in Photovoltaics: Research and Applications 2013, 21, 82-87.
20. Li, L.; Coates, N.; Moses, D., Solution-Processed Inorganic Solar Cell Based on in Situ Synthesis and Film Deposition of CuInS2 Nanocrystals. Journal of the American Chemical Society 2010, 132, 22
21. Uhl, A. R.; Fella, C.; Chirila, A.; Kaelin, M. R.; Karvonen, L.; Weidenkaff, A.; Borca, C. N.; Grolimund, D.; Romanyuk, Y. E.; Tiwari, A. N., Non-vacuum deposition of Cu(In,Ga)Se2 absorber layers from binder free, alcohol solutions. Prog Photovoltaics 2012, 20, 526-533.
22. Wang, W.; Han, S.-Y.; Sung, S.-J.; Kim, D.-H.; Chang, C.-H., 8.01% CuInGaSe2 Solar Cells Fabricated by Air-Stable Low-Cost Ink. Physical Chemistry Chemical Physics 2012.
23. Cho, A.; Ahn, S.; Yun, J. H.; Eo, Y.-J.; Song, H.; Yoon, K., Carbon layer reduction via a hybrid ink of binary nanoparticles in non-vacuum-processed CuInSe2 thin films. Sol Energ Mat Sol C 2013, 110, 126-132.
24. Lee, E.; Park, S. J.; Cho, J. W.; Gwak, J.; Oh, M. K.; Min, B. K., Nearly carbon-free printable CIGS thin films for solar cell applications. Sol Energ Mat Sol C 2011, 95, 2928-2932.
25. Steinhagen, C.; Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Koo, B.; Korgel, B. A., Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost Photovoltaics. Journal of the American Chemical Society 2009, 131, 12554-12555.
26. Guo, Q.; Ford, G. M.; Yang, W. C.; Walker, B. C.; Stach, E. A.; Hillhouse, H. W.; Agrawal, R., Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals. Journal of the American Chemical Society 2010, 132, 17384-17386.
27. Ford, G. M.; Guo, Q. J.; Agrawal, R.; Hillhouse, H. W., Earth Abundant Element Cu2Zn(Sn1-xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication. Chemistry of Materials 2011, 23, 2626-2629.
28. Tanaka, K.; Oonuki, M.; Moritake, N.; Uchiki, H., Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol Energ Mat Sol C 2009, 93, 583-587.
29. Todorov, T. K.; Reuter, K. B.; Mitzi, D. B., High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber. Adv Mater 2010, 22, E156.
30. Barkhouse, D. A. R.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Mitzi, D. B., Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog Photovoltaics 2012, 20, 6-11.
31. Cao, Y.; Denny, M. S.; Casper, J. V.; Farneth, W. E.; Guo, Q.; Ionkin, A. S.; Johnson, L. K.; Lu, M.; Malajovich, I.; Radu, D., High Efficiency Solution-Processed CZTSSe Thin Film Solar Cells Prepared from Binary and Ternary Nanoparticles. Journal of the American Chemical Society 2012.
32. Yang, W. B.; Duan, H. S.; Bob, B.; Zhou, H. P.; Lei, B.; Chung, C. H.; Li, S. H.; Hou, W. W.; Yang, Y., Novel Solution Processing of High-Efficiency Earth-Abundant Cu2ZnSn(S,Se)4 Solar Cells. Adv Mater 2012, 24, 6323-6329.
33. Ki, W.; Hillhouse, H. W., Earth-Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non-Toxic Solvent. Adv Energy Mater 2011, 1, 732-735.
34. Shinde, N. M.; Dubal, D. P.; Dhawale, D. S.; Lokhande, C. D.; Kim, J. H.; Moon, J. H., Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application. Mater Res Bull 2012, 47, 302-307.
Chapter 5
1. O’regan, B.; Grfitzeli, M., A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 1991, 353, 737-740.
2. Calogero, G.; Calandra, P.; Irrera, A.; Sinopoli, A.; Citro, I.; Di Marco, G., A New Type of Transparent and Low Cost Counter-electrode Based on Platinum Nanoparticles for Dye-sensitized Solar Cells. Energy & Environmental Science 2011, 4, 1838-1844.
3. Wu, M.; Lin, X.; Wang, Y.; Wang, L.; Guo, W.; Qi, D.; Peng, X.; Hagfeldt, A.; Grätzel, M.; Ma, T., Economical Pt-free Catalysts for Counter Electrodes of Dye-sensitized Solar Cells. Journal of the American Chemical Society 2012, 134, 3419-3428.
4. Li, G.; Song, J.; Pan, G.; Gao, X., Highly Pt-like Electrocatalytic Activity of Transition Metal Nitrides for Dye-sensitized Solar Cells. Energy & Environmental Science 2011, 4, 1680-1683.
5. Jiang, Q.; Li, G.; Gao, X., Highly Ordered TiN Nanotube Arrays as Counter Electrodes for Dye-sensitized Solar Cells. Chem. Commun. 2009, 6720-6722.
6. Zhang, H.; Ge, M.; Yang, L.; Zhou, Z.; Chen, W.; Li, Q.; Liu, L., Synthesis and Catalytic Properties of Sb2S3 Nanowire-Bundle as Counter Electrode for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117, 10285-10290.
7. Xin, X.; He, M.; Han, W.; Jung, J.; Lin, Z., Low‐Cost Copper Zinc Tin Sulfide Counter Electrodes for High‐Efficiency Dye‐Sensitized Solar Cells. Angewandte Chemie International Edition 2011, 50, 11739-11742.
8. Gong, F.; Wang, H.; Xu, X.; Zhou, G.; Wang, Z.-S., In Situ Growth of Co0. 85Se and Ni0. 85Se on Conductive Substrates as High-Performance Counter Electrodes for Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2012, 134, 10953-10958.
9. Wang, Y. C.; Wang, D. Y.; Jiang, Y. T.; Chen, H. A.; Chen, C. C.; Ho, K. C.; Chou, H. L.; Chen, C. W., FeS2 Nanocrystal Ink as a Catalytic Electrode for Dye‐Sensitized Solar Cells. Angewandte Chemie International Edition 2013, 52, 6694-6698.
10. Li, G. r.; Wang, F.; Jiang, Q. w.; Gao, X. p.; Shen, P. w., Carbon Nanotubes with Titanium Nitride as a Low‐Cost Counter‐Electrode Material for Dye‐Sensitized Solar Cells. Angewandte Chemie International Edition 2010, 49, 3653-3656.
11. Okumura, T.; Sugiyo, T.; Inoue, T.; Ikegami, M.; Miyasaka, T., Nickel Oxide Hybridized Carbon Film as an Efficient Mesoscopic Cathode for Dye-Sensitized Solar Cells. Journal of The Electrochemical Society 2013, 160, H155-H159.
12. Wang, Z.-S.; Li, Z.; Gong, F.; Zhou, G., NiS2/Reduced Graphene Oxide Nanocomposites for Efficient Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117, 6561-6566.
13. Wu, X. J.; Shen, D. Z.; Zhang, Z. Z.; Zhang, J. Y.; Liu, K. W.; Li, B. H.; Lu, Y. M.; Yao, B.; Zhao, D. X.; Li, B. S.; Shan, C. X.; Fan, X. W.; Liu, H. J.; Yang, C. L., On the nature of the carriers in ferromagnetic FeSe. Applied Physics Letters 2007, 90.
14. Aziz, M. M.; Wright, C. D., A transfer function approach to reaction rate analysis with applications to phase-change materials and devices. Applied Physics Letters 2013, 103.
15. Hsu, F. C.; Luo, J. Y.; Yeh, K. W.; Chen, T. K.; Huang, T. W.; Wu, P. M.; Lee, Y. C.; Huang, Y. L.; Chu, Y. Y.; Yan, D. C.; Wu, M. K., Superconductivity in the PbO-type structure alpha-FeSe. P Natl Acad Sci USA 2008, 105, 14262-14264.
16. Wenk, H.-R.; Bulakh, A., Minerals: Their Constitution and Origin. Cambridge University Press: 2004.
17. Liu, Q.; Zhang, J.-Y., A General Synthesis of ComSn (Co9S8, Co3S4, and Co1-xS) Hierarchical Microspheres with Controllable Homogeneous Phases. CrystEngComm 2013, 15, 5087-5092.
18. Chen, G.; Ma, W.; Zhang, D.; Zhu, J.; Liu, X., Shape Evolution and Electrochemical Properties of Cobalt Sulfide via A Biomolecule-assisted Solvothermal Route. Solid State Sciences 2012, 17, 102-106.
19. Yin, Y.; Erdonmez, C. K.; Cabot, A.; Hughes, S.; Alivisatos, A. P., Colloidal Synthesis of Hollow Cobalt Sulfide Nanocrystals. Advanced Functional Materials 2006, 16, 1389-1399.
20. Kung, C.-W.; Chen, H.-W.; Lin, C.-Y.; Huang, K.-C.; Vittal, R.; Ho, K.-C., CoS Acicular Nanorod Arrays for the Counter Electrode of an Efficient Dye-Sensitized Solar Cell. ACS nano 2012, 6, 7016-7025.
21. Zhang, X.; Liu, Q.; Meng, L.; Wang, H.; Bi, W.; Peng, Y.; Yao, T.; Wei, S.; Xie, Y., In-Plane Coassembly Route to Atomically-Thick Inorganic-Organic Hybrid Nanosheets. ACS nano 2013, 7, 1682-1688.
22. Feng, Q. J.; Shen, D. Z.; Zhang, J. Y.; Li, B. S.; Li, B. H.; Lu, Y. M.; Fan, X. W.; Liang, H. W., Ferromagnetic FeSe: Structural, electrical, and magnetic properties. Applied Physics Letters 2006, 88.
23. Bouroushian, M., Electrochemistry of metal chalcogenides. Springer: 2010.
24. Van der Biest, O. O.; Vandeperre, L. J., Electrophoretic deposition of materials. Annual Review of Materials Science 1999, 29, 327-352.
25. Besra, L.; Liu, M., A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in materials science 2007, 52, 1-61.
26. Chang, S.-H.; Lu, M.-D.; Tung, Y.-L.; Tuan, H.-Y., Gram-Scale Synthesis of Catalytic Co9S8 Nanocrystal Ink as a Cathode Material for Spray-Deposited, Large-Area Dye-Sensitized Solar Cells. ACS nano 2013, 7, 9443-9451.
27. Niu, J.; Xu, W.; Shen, H.; Li, S.; Wang, H.; Li, L. S., Synthesis of CdS, ZnS, and CdS/ZnS Core/Shell Nanocrystals Using Dodecanethiol. Bull. Korean Chem. Soc. 2012, 33, 393-397.
28. Singh, A.; Geaney, H.; Laffir, F.; Ryan, K. M., Colloidal Synthesis of Wurtzite Cu2ZnSnS4 Nanorods and Their Perpendicular Assembly. Journal of the American Chemical Society 2012, 134, 2910-2913.
29. Kuzuya, T.; Itoh, K.; Sumiyama, K., Low Polydispersed Copper-sulfide Nanocrystals Derived from Various Cu–alkyl Amine Vomplexes. Journal of colloid and interface science 2008, 319, 565-571.
30. Xiao, Y.; Wu, J.; Lin, J.-Y.; Tai, S.-Y.; Yue, G., Pulse electrodeposition of CoS on MWCNT/Ti as a high performance counter electrode for a Pt-free dye-sensitized solar cell. Journal of Materials Chemistry A 2013, 1, 1289-1295.
31. Hsu, C.-P.; Lee, K.-M.; Huang, J. T.-W.; Lin, C.-Y.; Lee, C.-H.; Wang, L.-P.; Tsai, S.-Y.; Ho, K.-C., EIS Analysis on Low Temperature Fabrication of TiO2 Porous Films for Dye-sensitized Solar Cells. Electrochimica Acta 2008, 53, 7514-7522.
32. Subramanian, A.; Wang, H.-W., Effects of Boron Doping in TiO2 Nanotubes and The Performance of Dye-sensitized Solar Cells. Applied Surface Science 2012, 258, 6479-6484.
33. Tang, Y.; Pan, X.; Zhang, C.; Dai, S.; Kong, F.; Hu, L.; Sui, Y., Influence of Different Electrolytes on The Reaction Mechanism of A Triiodide/Iodide Redox Couple on The Platinized FTO Glass Electrode in Dye-sensitized Solar Cells. The Journal of Physical Chemistry C 2010, 114, 4160-4167.