研究生: |
賴思年 Lai, Sz-Nian |
---|---|
論文名稱: |
表面工程技術在增強壓電觸媒能源擷取與優化自供電智慧感測器之研究 Surface Engineering Techniques: Boosting Energy Harvesting for Piezocatalyst and Optimizing Self-powered Smart Sensor |
指導教授: |
吳志明
Wu, Jyh-Ming |
口試委員: |
韋光華
Wei, Kung-Hwa 洪緯璿 Hung, Wei-Hsuan 林宗宏 Lin, Zong-Hong 楊東翰 Yang, Tung-Han |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 125 |
中文關鍵詞: | 表面工程 、自組裝單層 、壓電觸媒 、染料降解 、水解產氫 、摩擦式奈米發電機 、自供電無線感測器 |
外文關鍵詞: | surface engineering, self-assembled monolayer, piezocatalyst, dye degradation, hydrogen evolution, triboelectric nanogenerator, self-powered wireless sensor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用表面工程技術透過不同矽烷 (silane) 溶液對材料進行表面改質,探討自組裝單層 (self-assembled monolayers, SAMs) 建立於材料表面後的物理與化學性質,並用於增強壓電觸媒 (piezocatalyst) 能源擷取能力與優化自供電 (self-powered) 摩擦式奈米發電機 (triboelectric nanogenerator, TENG) 於智慧無線感測應用。首先,使用 (3-氯丙基) 三甲氧基矽烷 (CPTMS) 和全氟辛基三乙氧基矽烷 (FOTS) 的SAMs對含有羥基 (–OH) 基團的Ti3C2Tx MXene表面進行修飾,透過改變 Ti3C2Tx 中矽烷頭基的 Si–O 鍵結長度來增強壓電性,理論計算表明表面功能化Ti3C2Tx-FOTS會引起局部晶格扭曲增強其非中心對稱結構 (noncentrosymmetric structure)。而Ti3C2Tx-FOTS 的染料降解速率常數 (kobs) 達 0.9 min−1,高於 Ti3C2Tx-CPTMS 15 倍,並高於 Ti3C2Tx 111 倍;Ti3C2Tx-FOTS之產氫速率也顯著增加,達 900.46 µmol·g−1h−1,是未改質 Ti3C2Tx 的三倍。
這項研究還展示了基於TENG自供電無線感測器的智慧乒乓球拍,標誌著遠端監控和運動科學的重大進步,透過含有–OH 和 Si–O–Si表面官能基的聚二甲基矽氧烷(polydimethylsiloxane, PDMS),利用FOTS的SAMs可將PDMS的電負度調整至更負。因此,PDMS-FOTS TENG 的性能顯著提高,電壓和電流輸出分別達到 181 V 和 98 nA,比PDMS-ENG 分別提高了 2.83 倍和 3.03 倍,將 PDMS-FOTS TENG 與資料擷取 (data acquisition, DAQ) 卡、Wi-Fi 模組和人機介面 (human-machine interface, HMI) 整合到乒乓球拍中,形成一個能夠捕捉球體撞擊位置與力道即時數據的無線系統,而卓越的穩定性和靈敏度透過 340 次衝擊測試之 100% 落點區分準確度和 10 kHz 的取樣頻率得以體現。 SAMs 的表面工程技術於本研究中揭示了 Ti3C2Tx-FOTS 優異的壓電觸媒特性與優化 TENG 並整合在智慧型設備中的應用潛力。
This study employs surface engineering techniques to modify material surfaces with various silane solutions. It examines functionalized materials' physical and chemical properties after the surface modification of the self-assembled monolayers (SAMs). These techniques are applied to enhance the energy harvesting capabilities of piezocatalysts and to optimize self-powered triboelectric nanogenerators (TENGs) in smart wireless sensing applications. Firstly, the Ti3C2Tx surface, containing hydroxyl (–OH) groups, is modified using SAMs of (3-chloropropyl) trimethoxysilane (CPTMS) and fluoroalkylsilane (FOTS). This modification enhances the piezoelectricity by altering the Si–O bonding length of the organo-silane headgroups in Ti3C2Tx. The theoretical calculation reveals that surface functionalizing Ti3C2Tx-FOTS causes localized lattice distortions and enhances the noncentrosymmetric structure of its surface. Furthermore, Ti3C2Tx-FOTS demonstrates a dye degradation rate constant (kobs) of 0.9 min−1, which is 15-fold higher than Ti3C2Tx-CPTMS and 111-fold higher than pristine Ti3C2Tx. The hydrogen evolution rate also shows a significant increase, with Ti3C2Tx-FOTS achieving 900.46 µmol·g−1h−1, triple that of unmodified Ti3C2Tx.
Additionally, this study presents an application of a ping-pong paddle equipped with self-powered wireless sensors based on TENG, marking a significant advancement in remote monitoring and sports science. By utilizing SAMs of FOTS on the polydimethylsiloxane (PDMS) surface, which contains –OH and Si–O–Si functional groups, the electronegativity of PDMS can be more negative. Consequently, the PDMS-FOTS TENG dramatically increases performance, with voltage and current outputs reaching 181 V and 98 nA, respectively—enhancements of 2.83 times and 3.03 times over pristine PDMS TENG. Integrating PDMS-FOTS TENGs into the ping-pong paddle with a data acquisition (DAQ) card, Wi-Fi module, and human-machine interface (HMI), resulting in a wireless system capable of capturing real-time data on the impact positions and strengths of ping-pong balls. The system's exceptional stability and sensitivity are demonstrated through its 100% accuracy in position differentiation over 340 ball impacts and its sampling frequency of 10 kHz. The surface engineering technology of SAMs reveals the superior piezocatalyts of Ti3C2Tx-FOTS and the significant potential of optimizing and integrating TENG sensors in intelligent equipment.
1. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chemical Reviews, 1996. 96(4): p. 1533-1554.
2. Love, J.C., et al., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews, 2005. 105(4): p. 1103-1170.
3. Lai, S.-N., et al., An ultraefficient surface functionalized Ti3C2Tx MXene piezocatalyst: synchronous hydrogen evolution and wastewater treatment. Journal of Materials Chemistry A, 2024. 12(6): p. 3340-3351.
4. Lai, S.-N., et al., Ultrasensitivity of self-powered wireless triboelectric vibration sensor for operating in underwater environment based on surface functionalization of rice husks. Nano Energy, 2019. 60: p. 715-723.
5. Wu, J.M., et al., Piezo-Catalytic Effect on the Enhancement of the Ultra-High Degradation Activity in the Dark by Single- and Few-Layers MoS2 Nanoflowers. Advanced Materials, 2016. 28(19): p. 3718-3725.
6. Chung, Y.-J., et al., Coupling Effect of Piezo–Flexocatalytic Hydrogen Evolution with Hybrid 1T- and 2H-Phase Few-Layered MoSe2 Nanosheets. Advanced Energy Materials, 2020. 10(42): p. 2002082.
7. Zhao, Q., et al., Highly-efficient piezocatalytic performance of nanocrystalline BaTi0.89Sn0.11O3 catalyst with Tc near room temperature. Nano Energy, 2021. 85: p. 106028.
8. Zhu, Y., et al., Dual Nanoislands on Ni/C Hybrid Nanosheet Activate Superior Hydrazine Oxidation-Assisted High-Efficiency H2 Production. Angewandte Chemie International Edition, 2022. 61(2): p. e202113082.
9. Zhang, Y.G., et al., Water flow induced piezoelectric polarization and sulfur vacancy boosting photocatalytic hydrogen peroxide evolution of cadmium sulfide nanorods. Applied Catalysis B-Environmental, 2023. 331: p. 122714.
10. Wu, J.M., et al., Photoresponsive and Ultraviolet to Visible-Light Range Photocatalytic Properties of ZnO:Sb Nanowires. Journal of the Electrochemical Society, 2011. 158(1): p. K6-K10.
11. Xiao, M., et al., Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Advanced Materials, 2019. 31(38).
12. You, H.L., et al., Harvesting the Vibration Energy of BiFeO3 Nanosheets for Hydrogen Evolution. Angewandte Chemie-International Edition, 2019. 58(34): p. 11779-11784.
13. Zovko, K., et al., IoT and health monitoring wearable devices as enabling technologies for sustainable enhancement of life quality in smart environments. Journal of Cleaner Production, 2023. 413: p. 137506.
14. Khan, M.M., et al., IoT-Based Health Monitoring System Development and Analysis. Security and Communication Networks, 2022. 2022: p. 9639195.
15. Kang, S., S. Kim, and J. Kim, Forensic analysis for IoT fitness trackers and its application. Peer-to-Peer Networking and Applications, 2020. 13(2): p. 564-573.
16. Yesmin, S., et al., A Cost-effective IoT Based Fitness Tracker For Physically Challenged People. 2021.
17. Johannessen, E., et al., Collecting health-related research data using consumer-based wireless smart scales. International Journal of Medical Informatics, 2023. 173: p. 105043.
18. Wu, J.M., Y.H. Lin, and B.Z. Yang, Force-pad made from contact-electrification poly(ethylene oxide)/InSb field-effect transistor. Nano Energy, 2016. 22: p. 468-474.
19. Zhang, C., et al., Contact Electrification Field-Effect Transistor. Acs Nano, 2014. 8(8): p. 8702-8709.
20. Fan, F.-R., Z.-Q. Tian, and Z. Lin Wang, Flexible triboelectric generator. Nano Energy, 2012. 1(2): p. 328-334.
21. Yang, Y., et al., Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator. Acs Nano, 2012. 6(11): p. 10378-10383.
22. Wu, J.M., C.K. Chang, and Y.T. Chang, High-output current density of the triboelectric nanogenerator made from recycling rice husks. Nano Energy, 2016. 19: p. 39-47.
23. Chen, J., et al., Harmonic-Resonator-Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self-Powered Active Vibration Sensor. Advanced Materials, 2013. 25(42): p. 6094-6099.
24. Wu, J.M., C.C. Lee, and Y.H. Lin, High sensitivity wrist-worn pulse active sensor made from tellurium dioxide microwires. Nano Energy, 2015. 14: p. 102-110.
25. Cha, S.N., et al., Sound-Driven Piezoelectric Nanowire-Based Nanogenerators. Advanced Materials, 2010. 22(42): p. 4726.
26. Wu, J.M. and C.C. Kao, Self-powered pendulum and micro-force active sensors based on a ZnS nanogenerator. Rsc Advances, 2014. 4(27): p. 13882-13887.
27. Wu, Y., et al., A Self-Powered Angle Measurement Sensor Based on Triboelectric Nanogenerator. Advanced Functional Materials, 2015. 25(14): p. 2166-2174.
28. Khan, U., et al., Graphene Tribotronics for Electronic Skin and Touch Screen Applications. Advanced Materials, 2017. 29(1).
29. Liu, Y., S.M. Niu, and Z.L. Wang, Theory of Tribotronics. Advanced Electronic Materials, 2015. 1(9).
30. Zhang, C. and Z.L. Wang, Tribotronics-A new field by coupling triboelectricity and semiconductor. Nano Today, 2016. 11(4): p. 521-536.
31. Yang, B.Z., Y.S. Lin, and J.M. Wu, Flexible contact-electrification field-effect transistor made from the P3HT:PCBM conductive polymer thin film. Applied Materials Today, 2017. 9: p. 96-103.
32. Lin, Y.-T., S.-N. Lai, and J.M. Wu, Simultaneous Piezoelectrocatalytic Hydrogen-Evolution and Degradation of Water Pollutants by Quartz Microrods@Few-Layered MoS2 Hierarchical Heterostructures. Advanced Materials, 2020. 32(34): p. 2002875.
33. Lin, H.Y., et al., Systematic Investigation of the Piezocatalysis-Adsorption Duality of Polymorphic MoS2 Nanoflowers. Applied Catalysis B-Environmental, 2022. 317(15): p. 121717.
34. Wang, Y.-C. and J.M. Wu, Oxygen Vacancy Concentration: Effect of Controlled Oxygen Vacancy on H2-Production through the Piezocatalysis and Piezophototronics of Ferroelectric R3C ZnSnO3 Nanowires. Advanced Functional Materials, 2020. 30(5): p. 2070028.
35. Guo, L., et al., Enhanced photocatalytic H2 evolution by plasmonic and piezotronic effects based on periodic Al/BaTiO3 heterostructures. Nano Energy, 2019. 62: p. 513-520.
36. Tang, Q., et al., Enhanced Piezocatalytic Performance of BaTiO3 Nanosheets with Highly Exposed {001} Facets. Advanced Functional Materials, 2022. 32(35).
37. Liu, Y.L. and J.M. Wu, Synergistically Catalytic Activities of BiFeO3/TiO2 Core-Shell Nanocomposites for Degradation of Organic Dye Molecule through Piezophototronic Effect. Nano Energy, 2019. 56: p. 74-81.
38. Wu, M.H., et al., Ultrahigh efficient degradation activity of single- and few-layered MoSe2 nanoflowers in dark by piezo-catalyst effect. Nano Energy, 2017. 40: p. 369-375.
39. Masimukku, S., et al., High efficient degradation of dye molecules by PDMS embedded abundant single-layer tungsten disulfide and their antibacterial performance. Nano Energy, 2018. 46: p. 338-346.
40. Chang, S.C., et al., Piezo-Photocatalysts Based on a Ferroelectric High-Entropy Oxide. Applied Catalysis B-Environmental, 2023. 324: p. 122204.
41. Wu, P.Y., et al., Flexoelectric Catalysts Based on Hierarchical Wrinkling Surface of Centrosymmetric High-Entropy Oxide. Acs Nano, 2023.
42. Guo, S.L., S.N. Lai, and J.M. Wu, Strain-Induced Ferroelectric Heterostructure Catalysts of Hydrogen Production through Piezophototronic and Piezoelectrocatalytic System. Acs Nano, 2021. 15(10): p. 16106-16117.
43. Hu, C., et al., Exceptional Cocatalyst-Free Photo-Enhanced Piezocatalytic Hydrogen Evolution of Carbon Nitride Nanosheets from Strong In-Plane Polarization. Advanced Materials, 2021. 33(24).
44. Pan, L., et al., Advances in Piezo-Phototronic Effect Enhanced Photocatalysis and Photoelectrocatalysis. Advanced Energy Materials, 2020. 10(15).
45. Li, S., et al., Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: Understanding the piezocatalytic effect. Nano Energy, 2019. 66: p. 104083.
46. Tan, D.C., et al., Piezoelectricity in monolayer MXene for nanogenerators and piezotronics. Nano Energy, 2021. 90.
47. Pan, X.Y., et al., 2D MXenes polar catalysts for multi-renewable energy harvesting applications. Nature Communications, 2023. 14(1).
48. Jiang, Q., et al., MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy, 2018. 45: p. 266-272.
49. Luo, X.X., et al., Tribovoltaic Nanogenerators Based on MXene-Silicon Heterojunctions for Highly Stable Self-Powered Speed, Displacement, Tension, Oscillation Angle, and Vibration Sensors. Advanced Functional Materials, 2022. 32(23).
50. Anasori, B., M.R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017. 2(2): p. 16098.
51. Liu, A., et al., Recent Progress in MXene-Based Materials: Potential High-Performance Electrocatalysts. Advanced Functional Materials, 2020. 30(38): p. 2003437.
52. Pang, J., et al., Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019. 48(1): p. 72-133.
53. Xiong, D., et al., Recent Advances in Layered Ti3C2Tx MXene for Electrochemical Energy Storage. Small, 2018. 14(17): p. 1703419.
54. Tang, J., et al., Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage. eScience, 2021. 1(2): p. 203-211.
55. Morales-García, Á., F. Calle-Vallejo, and F. Illas, MXenes: New Horizons in Catalysis. ACS Catalysis, 2020. 10(22): p. 13487-13503.
56. Gao, G., A.P. O’Mullane, and A. Du, 2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2017. 7(1): p. 494-500.
57. Zhu, Y., et al., Biphasic Transition Metal Nitride Electrode Promotes Nucleophile Oxidation Reaction for Practicable Hybrid Water Electrocatalysis. Advanced Functional Materials, 2023. 33(25): p. 2300547.
58. Nicosia, C. and J. Huskens, Reactive self-assembled monolayers: from surface functionalization to gradient formation. Materials Horizons, 2014. 1(1): p. 32-45.
59. Sahu, M., et al., Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics. Nano Energy, 2022. 97: p. 107208.
60. Zhang, J., Z. Yang, and X. Liang Development and Prospects of Triboelectric Nanogenerators in Sports and Physical State Monitoring. Frontiers in Materials, 2022. 9.
61. Saha, B., et al., A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes. Journal of Micromechanics and Microengineering, 2016. 26(1).
62. Rahman, M., J. Haider, and M.S.J. Hashmi, 8.03 - Health and Safety Issues in Emerging Surface Engineering Techniques, in Comprehensive Materials Processing, S. Hashmi, et al., Editors. 2014, Elsevier: Oxford. p. 35-47.
63. James, A.S., et al., The role and impacts of surface engineering in environmental design. Materials & Design, 2005. 26(7): p. 594-601.
64. Sultana, A., et al., Surface Engineering Strategies to Enhance the In Situ Performance of Medical Devices Including Atomic Scale Engineering. International Journal of Molecular Sciences, 2021. 22(21): p. 11788.
65. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society, 1980. 102(1): p. 92-98.
66. Saha, B., et al., A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes. Journal of Micromechanics and Microengineering, 2016. 26(1): p. 013002.
67. Curie, J. and P. Curie, Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de Minéralogie, 1880: p. 90-93.
68. Aina, R., et al., Ferroelectric and Relaxor Ferroelectric to Paralectric Transition Based on Lead Magnesium Niobate (PMN) Materials. Advanced Materials Research, 2013. 795: p. 658-663.
69. Starr, M.B. and X. Wang, Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. Scientific Reports, 2013. 3(1): p. 1-8.
70. Hong, K.-S., et al., Direct water splitting through vibrating piezoelectric microfibers in water. The journal of physical chemistry letters, 2010. 1(6): p. 997-1002.
71. Xue, X., et al., Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy, 2015. 13: p. 414-422.
72. Wu, J.M., et al., Piezo‐catalytic effect on the enhancement of the ultra‐high degradation activity in the dark by single‐and few‐layers MoS2 nanoflowers. Advanced Materials, 2016. 28(19): p. 3718-3725.
73. Guzman, F., S.S. Chuang, and C. Yang, Role of methanol sacrificing reagent in the photocatalytic evolution of hydrogen. Industrial & Engineering Chemistry Research, 2012. 52(1): p. 61-65.
74. Wang, Y., et al., Enhanced non-layer-dependent piezo-response in sailboat-like vertical molybdenum disulfide nanosheets for piezo-catalytic hydrogen evolution and dye degradation: Effect of microstructure and phase composition. Journal of Colloid and Interface Science, 2023. 642: p. 304-320.
75. Lin, M.-C., et al., Self-powered photoelectrochemical quartz/TiO2 microsystem through piezopotential sensitized photocatalytic process. Nano Energy, 2022. 91: p. 106640.
76. Su, Y., et al., Enhanced H2 evolution based on ultrasound-assisted piezo-catalysis of modified MoS2. Journal of Materials Chemistry A, 2018. 6(25): p. 11909-11915.
77. Zhao, Z., et al., Exclusive enhancement of catalytic activity in Bi0.5Na0.5TiO3 nanostructures: new insights into the design of efficient piezocatalysts and piezo-photocatalysts. Journal of Materials Chemistry A, 2020. 8(32): p. 16238-16245.
78. Huang, X., et al., Insight into the piezo-photo coupling effect of PbTiO3/CdS composites for piezo-photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2021. 282: p. 119586.
79. Jiang, Y., et al., Efficient Cocatalyst-Free Piezo-Photocatalytic Hydrogen Evolution of Defective BaTiO3–x Nanoparticles from Seawater. ACS Sustainable Chemistry & Engineering, 2023. 11(8): p. 3370-3389.
80. Jiang, Y., et al., Insight into the effect of OH modification on the piezo-photocatalytic hydrogen production activity of SrTiO3. Journal of Colloid and Interface Science, 2022. 612: p. 111-120.
81. Liu, Q., et al., Superior photo-piezoelectric catalytic performance using Bi0.5Na0.5TiO3@BiVO4 based cloth. Journal of Materials Chemistry A, 2021. 9(33): p. 17841-17854.
82. Gao, S., et al., Oxalic acid functionalization of BaTiO3 nanobelts for promoting their piezo-degradation organic contaminants. Journal of Materiomics, 2021. 7(6): p. 1275-1283.
83. Naguib, M., et al., Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials, 2011. 23(37): p. 4248-4253.
84. Tan, D., et al., Piezoelectricity in monolayer MXene for nanogenerators and piezotronics. Nano Energy, 2021. 90: p. 106528.
85. Xiong, D., et al., Recent Advances in Layered Ti3C2Tx MXene for Electrochemical Energy Storage. Small, 2018. 14(17): p. 1703419.
86. Kajiyama, S., et al., Sodium-Ion Intercalation Mechanism in MXene Nanosheets. ACS Nano, 2016. 10(3): p. 3334-3341.
87. Kurra, N., et al., MXene-on-Paper Coplanar Microsupercapacitors. Advanced Energy Materials, 2016. 6(24): p. 1601372.
88. Li, R., et al., MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. ACS Nano, 2017. 11(4): p. 3752-3759.
89. Shahzad, F., et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016. 353(6304): p. 1137-1140.
90. Ding, L., et al., A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks. Angewandte Chemie International Edition, 2017. 56(7): p. 1825-1829.
91. Wang, S.H., L. Lin, and Z.L. Wang, Triboelectric nanogenerators as self-powered active sensors. Nano Energy, 2015. 11: p. 436-462.
92. Wang, Z.L., Triboelectric nanogenerators as new energy technology and self-powered sensors - Principles, problems and perspectives. Faraday Discussions, 2014. 176: p. 447-458.
93. Wang, Z.L., et al., Triboelectric Nanogenerator: Vertical Contact-Separation Mode, in Triboelectric Nanogenerators. 2016, Springer International Publishing: Cham. p. 23-47.
94. Wu, J.M., Y.H. Lin, and B.-Z. Yang, Force-pad made from contact-electrification poly(ethylene oxide)/InSb field-effect transistor. Nano Energy, 2016. 22: p. 468-474.
95. Yang, B.-Z., Y.-S. Lin, and J.M. Wu, Flexible contact-electrification field-effect transistor made from the P3HT:PCBM conductive polymer thin film. Applied Materials Today, 2017. 9: p. 96-103.
96. Sun, J.-G., et al., A leaf-molded transparent triboelectric nanogenerator for smart multifunctional applications. Nano Energy, 2017. 32: p. 180-186.
97. Zhu, G., et al., Triboelectric-Generator-Driven Pulse Electrodeposition for Micropatterning. Nano Letters, 2012. 12(9): p. 4960-4965.
98. Wang, S., L. Lin, and Z.L. Wang, Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. Nano Letters, 2012. 12(12): p. 6339-6346.
99. Wang, S., et al., Sliding-Triboelectric Nanogenerators Based on In-Plane Charge-Separation Mechanism. Nano Letters, 2013. 13(5): p. 2226-2233.
100. Zhu, G., et al., Linear-Grating Triboelectric Generator Based on Sliding Electrification. Nano Letters, 2013. 13(5): p. 2282-2289.
101. Yang, Y., et al., A Single-Electrode Based Triboelectric Nanogenerator as Self-Powered Tracking System. Advanced Materials, 2013. 25(45): p. 6594-6601.
102. Yang, Y., et al., Single-Electrode-Based Sliding Triboelectric Nanogenerator for Self-Powered Displacement Vector Sensor System. ACS Nano, 2013. 7(8): p. 7342-7351.
103. Niu, S., et al., Theoretical Investigation and Structural Optimization of Single-Electrode Triboelectric Nanogenerators. Advanced Functional Materials, 2014. 24(22): p. 3332-3340.
104. Wang, S., et al., Freestanding Triboelectric-Layer-Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non-contact Modes. Advanced Materials, 2014. 26(18): p. 2818-2824.
105. Wang, Z.L., Triboelectric nanogenerators as new energy technology and self-powered sensors – Principles, problems and perspectives. Faraday Discussions, 2014. 176(0): p. 447-458.
106. Lee, K.Y., et al., Fully Packaged Self-Powered Triboelectric Pressure Sensor Using Hemispheres-Array. Advanced Energy Materials, 2016. 6(11): p. 1502566.
107. Luo, J., et al., Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nature Communications, 2019. 10(1): p. 5147.
108. Xia, Y. and G.M. Whitesides, Soft Lithography. Angewandte Chemie International Edition, 1998. 37(5): p. 550-575.
109. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters, 1996. 77(18): p. 3865-3868.
110. Ernzerhof, M. and G.E. Scuseria, Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. Journal of Chemical Physics, 1999. 110(11): p. 5029-5036.
111. Tan, J., et al., Large out-of-plane piezoelectricity of oxygen functionalized MXenes for ultrathin piezoelectric cantilevers and diaphragms. Nano Energy, 2019. 65.
112. Mouhat, F. and F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 2014. 90(22).
113. Wen, Y.F., et al., Ab Initio Study of the Elastic and Mechanical Properties of B19 TiAl. Crystals, 2017. 7(2).
114. Henkelman, G., A. Arnaldsson, and H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006. 36(3): p. 354-360.
115. Li, H., et al., Atomic Scaled Depth Correlation to the Oxygen Reduction Reaction Performance of Single Atom Ni Alloy to the NiO2 Supported Pd Nanocrystal. Advanced Science, 2023. 10(11): p. 2207109.
116. Naguib, M., et al., Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials, 2011. 23(37): p. 4248-4253.
117. Kresse, G. and J. Hafner, Ab initio molecular dynamics for liquid metals. Physical Review B, 1993. 47(1): p. 558-561.
118. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996. 6(1): p. 15-50.
119. Li, R.Y., et al., MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. Acs Nano, 2017. 11(4): p. 3752-3759.
120. Alhabeb, M., et al., Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene). Chemistry of Materials, 2017. 29(18): p. 7633-7644.
121. Chen, W.Y., et al., Surface Functionalization of Ti3C2TX MXene with Highly Reliable Superhydrophobic Protection for Volatile Organic Compounds Sensing. Acs Nano, 2020. 14(9): p. 11490-11501.
122. Riazi, H., et al., Surface Modification of a MXene by an Aminosilane Coupling Agent. Advanced Materials Interfaces, 2020. 7(6): p. 1902008.
123. Tan, D., et al., Monolayer MXene Nanoelectromechanical Piezo-Resonators with 0.2 Zeptogram Mass Resolution. Advanced Science, 2022. 9(22): p. 2201443.
124. Mustakeem, M., et al., MXene-Coated Membranes for Autonomous Solar-Driven Desalination. Acs Applied Materials & Interfaces, 2022. 14(4): p. 5265-5274.
125. Su, R., et al., Silver-Modified Nanosized Ferroelectrics as a Novel Photocatalyst. Small, 2015. 11(2): p. 202-207.
126. Zhu, P., Y. Chen, and J. Shi, Piezocatalytic Tumor Therapy by Ultrasound-Triggered and BaTiO3-Mediated Piezoelectricity. Advanced Materials, 2020. 32(29): p. 2001976.
127. Kim, W.H., et al., Imprint Control of Nonvolatile Shape Memory with Asymmetric Ferroelectric Multilayers. Chemistry of Materials, 2014. 26(24): p. 6911-6914.
128. Myhra, S., J.A.A. Crossley, and M.W. Barsoum, Crystal-chemistry of the Ti3AlC2 and Ti4AlN3 layered carbide/nitride phases—characterization by XPS. Journal of Physics and Chemistry of Solids, 2001. 62(4): p. 811-817.
129. Du, C.-F., et al., Self-Assemble and In Situ Formation of Ni1−xFexPS3 Nanomosaic-Decorated MXene Hybrids for Overall Water Splitting. Advanced Energy Materials, 2018. 8(26): p. 1801127.
130. Panchal, V., et al., Standardization of surface potential measurements of graphene domains. Scientific Reports, 2013. 3(1): p. 2597.
131. Rietwyk, K.J., et al., Work function and electron affinity of the fluorine-terminated (100) diamond surface. Applied Physics Letters, 2013. 102(9).
132. Li, X., et al., Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate. Applied Surface Science, 2015. 342: p. 76-83.
133. Lv, L., et al., Photodegradation of NO with Minimal NO2 Secondary Pollution by La2Ti2O7 Nanosheets Loaded with Ag Particles. Applied Surface Science, 2023. 619(15): p. 156657.
134. Wu, J.M., et al., Piezo-Catalytic Effect on the Enhancement of the Ultra-High Degradation Activity in the Dark by Single- and Few-Layers MoS2 Nanoflowers. Advanced Materials, 2016. 28(19): p. 3718-3725.
135. Chung, Y.J., et al., Coupling Effect of Piezo-Flexocatalytic Hydrogen Evolution with Hybrid 1T-and 2H-Phase Few-Layered MoSe2 Nanosheets. Advanced Energy Materials, 2020. 10(42).
136. Lin, Y.T., S.N. Lai, and J.M. Wu, Simultaneous Piezoelectrocatalytic Hydrogen-Evolution and Degradation of Water Pollutants by Quartz Microrods@Few-Layered MoS2 Hierarchical Heterostructures. Advanced Materials, 2020. 32(34): p. 2002875.
137. Yokoyama, M., K. Nakada, and A. Ishii, Density functional theory calculations for Pd adsorption on SO4 adsorbed on h-BN. Computational Materials Science, 2014. 82: p. 231-236.
138. Vu, D.L., et al., Surface polarity tuning through epitaxial growth on polyvinylidene fluoride membranes for enhanced performance of liquid-solid triboelectric nanogenerator. Composites Part B: Engineering, 2021. 223: p. 109135.
139. Tobisu, M. and N. Chatani, Catalytic reactions involving the cleavage of carbon-cyano and carbon-carbon triple bonds. Chemical Society Reviews, 2008. 37(2): p. 300-307.
140. de Jong, M., et al., A database to enable discovery and design of piezoelectric materials. Scientific Data, 2015. 2.
141. Thanasarnsurapong, T., et al., Ternary pentagonal BXN (X = C, Si, Ge, and Sn) sheets with high piezoelectricity. Rsc Advances, 2023. 13(14): p. 9636-9641.
142. Yang, J., et al., Designing electromechanical metamaterial with full nonzero piezoelectric coefficients. Science Advances, 2019. 5(11): p. eaax1782.
143. Sagiv, J., Organized Monolayers by Adsorption .1. Formation and Structure of Oleophobic Mixed Monolayers on Solid-Surfaces. Journal of the American Chemical Society, 1980. 102(1): p. 92-98.
144. Lai, S.N., et al., Ultrasensitivity of self-powered wireless triboelectric vibration sensor for operating in underwater environment based on surface functionalization of rice husks. Nano Energy, 2019. 60: p. 715-723.
145. Richard, G., et al. Influence of Dielectric Barrier Discharge treatment on the triboelectric charging and the electrostatic separation of plastic particles. in 2018 Electrostatics Joint Conference, Boston University, U.S.A., June 17-20. 2018. Boston, France.
146. Liu, Y., et al., Enhancement of Triboelectric Charge Density by Chemical Functionalization. Advanced Functional Materials, 2020. 30(50): p. 2004714.
147. Ohkubo, Y., K. Endo, and K. Yamamura, Adhesive-free adhesion between heat-assisted plasma-treated fluoropolymers (PTFE, PFA) and plasma-jet-treated polydimethylsiloxane (PDMS) and its application. Scientific Reports, 2018. 8.
148. Song, G., et al., Molecularly Engineered Surface Triboelectric Nanogenerator by Self-Assembled Monolayers (METS). Chemistry of Materials, 2015. 27(13): p. 4749-4755.
149. Price, J. and T. Goble, 10 - Signals and noise, in Telecommunications Engineer's Reference Book, F. Mazda, Editor. 1993, Butterworth-Heinemann. p. 10-1-10-15.
150. Choma, M.A., et al., Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 2003. 11(18): p. 2183-2189.
151. Wang, Z., et al., Two voltages in contact-separation triboelectric nanogenerator: From asymmetry to symmetry for maximum output. Nano Energy, 2020. 69.
152. Liu, Z., et al., Progress in Data Acquisition of Wearable Sensors. Biosensors, 2022. 12(10): p. 889.
153. Zheng, F., et al., A Hybridized Triboelectric-Electromagnetic Nanogenerator as a Power Supply of Monitoring Sensors for the Ventilation System. Advanced Energy Materials, 2022. 12(42): p. 2201966.
154. Zhou, X., et al., Smart Table Tennis Racket with Tunable Stiffness for Diverse Play Styles and Unconventional Technique Training. Advanced Materials Technologies, 2021. 6(10): p. 2170056.
155. Yu, X., Evaluation of training efficiency of table tennis players based on computer video processing technology. Optik, 2023. 273: p. 170404.
156. Malagoli Lanzoni, I., R. Di Michele, and F. Merni, Performance indicators in table tennis:a review of the literature. International Journal of Table Tennis Sciences, 2012. 7: p. 71-75.
157. Cross, R., The sweet spots of a tennis racket. Sports Engineering, 1999. 1: p. 63-78.