研究生: |
蔡純怡 Chum I Tsai |
---|---|
論文名稱: |
矽化鈷奈米線之合成以及其場發性質之研究 Synthesis and Field Emission Characteristics of Cobalt Silicide Nanowires |
指導教授: |
陳力俊
Lih Juann Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 矽化鈷 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬矽化物擁有高熔點、高穩定性和低電阻等優點,常應用於積體電路中作為閘極和接觸之材料。而在深次微米的積體電路技術中,由於線寬、接觸面積和接觸深度都逐漸縮小的情況下,奈米尺寸金屬矽化物的發展也漸漸受到重視。而本研究主要著重在一維矽化鈷奈米線的製備,以及探討其在場發射性質上的特性。
Cobalt silicide nanowires have been synthesized with cobalt chloride precursor using a simple atmospheric pressure chemical vapor transport and reaction method without intentional metal catalysts. The synthesized nanostructure with various morphologies and phases were controlled by varying the temperature and the vapor pressure.
The diameters and lengths of CoSi single-stem nanowires are 40-80 nm and tens of micrometers, respectively. The three-dimensional (3D) network structure of CoSi phase is 10-20 □m in size with an average diameter of 100 nm. The Co2Si nanowires were synthesized at a higher temperature. Diameters and lengths of Co2Si nanowires are 20-50 nm and several micrometers, respectively. The Co2Si aloe-like nanowires are about 10 □m in size.
The turn-on and threshold fields of 1.42 V/□m and 2.05 V/□m, respectively, were obtained for the CoSi nanostructure in field-emission measurements.
1. N. Taniguchi, “On the Basic Concept of Nano-Technolopy,” Jpn. Soc. Pre. Eng. (1974).
2. H. S. Nalwa, “Handbook of Nanostructured Materials and Nanotechnology,” Academic, New York, USA (2000).
3. V. M. Shalaev and M. Moskovits, “Nanostructured Materials: Clusters, Composite, and Thin Films,” American Chemical Society, Washington, DC, USA (1997).
4. A. S. Edelstein and R. C. Cammarata, “Nanomaterials : Synthesis, Properties, and Applications,” Institute of Physics, UK (1996).
5. Z. L. Wang, “Characterizing the Structure and Properties of Individual Wire-Like Nanoentities,” Adv. Mater. 12, 1295-1298 (2000).
6. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimentional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15, 353-389 (2003).
7. S. Iijima, “Helical Microtube of Graphitic Carbon,” Nature 354, 56-58 (1991)
8. A. G. Cullis, and L. T. Canham “Visible Light Emission due to Quantum Size Effects in Highly Porous Crystalline Silicon,” Nature 353, 335-338 (1991)
9. W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of Gallium Nitride Nanorods througha Carbon Nanotube-Confined Reaction,” Science 277, 1287-1289 (1997)
10. A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, 208-211 (1998)
11. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 Nanowires Prepared by Physical Evaporation,” Solid State Communications 109, 677-682 (1999)
12. Z. L. Wang, Y. Liu, and Z. Zhang, “Handbook of Nanophase and Nanostructured Materials: Materials Systems and Applications,” Academic, New York, USA (2003).
13. R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, 89-90 (1964).
14. Westwater, D. P. Gosain, S. Tomiya, and S. Usui, “Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction,” J. Vac. Sci. Technol. B 15, 554-557 (1997).
15. A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, 208-211 (1998).
16. Y. Y. Wu and P. D. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12, 605-607 (2000).
17. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen “Catalytic Growth and Characterization of Gallium Nitride Nanowires,” J. Am. Chem. Soc. 123, 2791-2798 (2001).
18. Z. H. Wu, X. Y. Mei, D. Kim, M. Blumin, and H. E. Ruda, “Growth of Au-Catalyzed Ordered GaAs Nanowire Arrays by Molecular-Beam Epitaxy,” Appl. Phys. Lett. 81, 5177-5179 (2002).
19. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature 409, 66-69 (2001).
20. Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, “Catalytic Growth and Photoluminescence Properties of Semiconductor Single-Crystal ZnS Nanowires,” Chem. Phys. Lett. 357, 314-318 (2002).
21. X. C. Wu and Y. R. Tao, “Growth of CdS Nanowires by Physical Vapor Deposition,” J. Cryst. Growth 242, 309-312 (2002).
22. M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. 13, 113-116 (2001).
23. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous Silica Nanowires: Intensive Blue Light Emitters,” Appl. Phys. Lett. 73, 3076-3078 (1998).
24. S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, “Semiconductor Nanowires from Oxides,” J. Mater. Res. 14, 4503-4507 (1999)
25. Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Germanium Nanowires Sheathed with An Oxide Layer,” Phys. Rev. B 61, 4518-4521 (2000).
26. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 58, R16024-R16026 (1998).
27. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Microstructures of Gallium Nitride Nanowires Synthesized by Oxide-Assisted Method,” Chem. Phys. Lett. 345, 377-380 (2001).
28. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Oxide- Assisted Growth and Optical Characterization of Gallium-Arsenide Nanowires,” Appl. Phys. Lett. 78, 3304-3306 (2001).
29. J. Q. Hu, X. L. Ma, Z. Y. Xie, N. Wong, C. S. Lee, and S. T. Lee, “Characterization of Zinc Oxide Crystal Whiskers Grown by Thermal Evaporation,” Chem. Phys. Lett. 344, 97-100 (2001).
30. J. F. Lin, J. P. Brid, Z. He, P. A. Bennett, and D. J. Smith, “Signatures of Quantum Transport in Self-Assembled Epitaxial Nickel Silicide Nanowires,” Appl. Phys. Lett. 85, 281-283 (2004).
31. Y. L. Chueh, L. J Chou, S. L. Cheng, L. J. Chen, and C. J. Tasi, “Synthesis and Characterization of Metallic TaSi2 Nanowires,” Appl. Phys. Lett. 87, 223113 (2005).
32. C. A. Decker, R. Solanki, J. L. Freeouf, and J. R. Carruthers, “Directed Growth of Nickel Silicide Nanowires,” Appl. Phys. Lett. 84, 1389-1391 (2004).
33. S. Y. Chen, and L. J. Chen, “Nitride-Mediated Epitaxy of Self-Assembled NiSi2 Nanowires on (001)Si,” Appl. Phys. Lett. 87, 253111 (2005).
34. B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yua, “Synthesis and Field Emission Properties of TiSi2 Nanowires,” Appl. Phys. Lett. 86, 243103 (2005).
35. J. D. Kima, and W. A. Anderson, “Spontaneous Nickel Monosilicide Nanowire Formation by Metal Induced Growth,” Appl. Phys. Lett. 86, 253101 (2005).
36. L. Ouyang, E. S. Thrall, M. M. Deshmukh, and H. K. Park, “Vapor-Phase Synthesis and Characterization of □-FeSi Nanowires,” Adv. Mater. 18, 1437-1440 (2006).
37. H. C. Hsu, W. W. Wu, H. F. Hsu, and L. J. Chen, “Growth of High-Density Titanium Silicide Nanowires in a Single Direction on a Silicon Surface,” Nano Lett. 7, 885-889, (2007).
38. A. L. Schmitt, L. Zhu, D. Schmeiaer, F. J. Himpsel, and S. Jin, “Metallic Single-Crystal CoSi Nanowires via Chemical Vapor Deposition of Single-Source Precursor,” J. Phys. Chem. B 37, 18142-18146 (2006).
39. Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu, and C. D. Chen, “TaSi2 Nanowire: A Potential Field Emitter and Interconnect,” Nano Lett. 6, 1637-1644 (2006).
40. Zhang, S. L.; Ostling, M. “Metal Silicides in CMOS Technology: Past, Present, and Future Trends,” Crit. ReV. Solid State Mater. Sci. 28, 1-130 (2003).
41. L. J. Chen, “Silicide Technology for Integrated Circuits: The Institution of Electrical Engineers,” London, U.K. (2004).
42. S. L. Zhang, and U. J. Smith, “Self-Aligned Silicides for Ohmic Contacts in Complementary Metal–Oxide–Semiconductor Technology: TiSi2, CoSi2, and NiSi,” J. Vac. Sci. Technol. A, 22, 1361-1370 (2004).
43. W. P. Maszara, “Fully Silicided Metal Gates for High-Performance CMOS Technology,“ J. Electrochem. Soc. 152, G550-554 (2005).
44. C. Fitz, M. Goldbach, A. Dupont, S. Schmidbauer, “Silicides as Contact Material for DRAM Applications,” Microelectron. Eng. 82, 460-466 (2005).
45. A. H. M. Kamal, A. T. Obeidat, and T. Budri, “Suppressing Boron Penetration and Cobalt Silicide Agglomeration in Deep Submicron p-Channel Metal–Oxide–Semiconductor Devices,” J. Vac. Sci. Technol. B 20, 173-179 (2002).
46. Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures,” Nature 430, 61-65 (2004).
47. P. R. Schwoebel and I. Brodie, “Surface-Science Aspects of Vacuum Microelectronics,” J. Vac. Sci. Technol. B, 13, 1391-1410 (1995).
48. W. J. Bintz and N. E. McGruer, “SiO2-Induced Silicon Emitter Emission Instability,” J. Vac. Sci. Technol. B, 12, 697-699 (1994).
49. V. V. Zhirnov, A. B. Voronin, E. I. Givargizov, and A. L. Meshcheryakova, “Emission Stability and High Current Performance of Diamond-Coated Si Emitters,” J. Vac. Sci. Technol. B, 14, 2034-2036 (1996).
50. E. J. Chi, J. Y. Shim, H. K. Baik, and S. M. Lee, “Determination of the Activation Energy for the Heterogeneous Nucleation of Misfit Dislocations,” Appl. Phys. Lett. 71, 324-326 (1997).
51. R. A. King, R. A. D. Mackenzie, G. D. W. Smith, and N. A. Cade, “Field Emission and Atom Probe Field Ion Microscope Studies of Palladium-Silicide-Coated Silicon Emitters,” J. Vac. Sci. Technol. B, 13, 603-606 (1995).
52. Z. A. Peng, and X. Peng, “Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth,“ J. Am. Chem. Soc. 124, 3343-3353 (2002).
53. J. Zhou, Y. Ding, S. Z. Deng, Li Gong, N. S. Xu, and Z. L. Wang, “Three-Dimensional Tungsten Oxide Nanoewire Networks,” Adv. Mater. 17, 2107-2110 (2005)
54. K. A. Dick, K. Deppert, M. W. Larsson, and Lars Samuelson, “Synthesis of Branched ‘Nanotrees’ by Controlled Seeding of Multiple Branching Events,” Nat. Mater. 3, 380-384 (2004)
55. H. C. Lo, D. Das, J. S. Hwang, K. H. Chen, C. H. Hsu, C. F. Chen, and L. C. Chen, “ SiC-Capped Nanotip Arrays for Field Emission with Ultralow Turn-on Field,” Appl. Phys. Lett. 83, 1420-1422 (2003).