簡易檢索 / 詳目顯示

研究生: 計榮羣
Chi, Jung Chun
論文名稱: 空時排列碼多輸入多輸出系統
Space-Time Permutation Code MIMO System
指導教授: 黃元豪
Huang, Yuan Hao
口試委員: 蔡佩芸
Tsai, Pei Yun
賴以威
Lai, I Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 62
中文關鍵詞: 空間調變多輸出多輸入排列碼空時碼
外文關鍵詞: Spatial Modulation, MIMO, Massive MIMO, permutation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空間調變 (spatial modulation) 的多輸入多輸出(multiple-input multiple-output, MIMO) 系統是在以往振幅與相位 (amplitude/phase) 調變基礎上,將傳送天線本 身也當作傳送資訊的一項調變技術。空間調變解決了以往在空間多工 (spatial multiplexing) 下,隨著天線數量提高而造成的能量損耗問題。同時間, 隨著天 線數量增加,空間調變系統的吞吐量 (throughput) 仍然隨之提高,因此空間調變 技術被視為應用在巨量 MIMO (massive MIMO) 的一項關鍵技術。然而,空間調 變尚有許多待解決之問題:對於行通通訊系統而言,行動裝置上的天線通常礙 於天線理論,只能維持一至二支天線,如果在這樣的條件下使用空間條便技術, 會因其接收多樣性 (receive diversity) 不足而導致錯誤率大幅上昇。另外,在傳 送通道彼此之間有高度相關性時,空間調變技術也不適用。本論文提出一套建 立在空間調變基礎上的新技術——空時排列碼 (Space-Time Permutation Code), 空時排列碼將多個時間點的天線選擇,取其排列順序作為傳送資訊,不同的排 列組合間的差異引出了時間多樣性 (time diversity) ,而時間多樣性解決了以往 空間調變下面臨的問題。此外,空時排列碼如同空間調變,使用天線選擇技術, 維持了低複雜度的接收端設計。空時排列碼還能與其他技術做結合,例如空時
    碼 (space-time coding) ,亦或是通道預編碼 (channel precoding) ,借由不同的技 術結合,能使空時排列碼適用於不同的通道環境,或是效能上的提升。在本論 文中,對於空時排列碼的設計進行參數分析,並提供設計範例。而在論文中模 擬並比較空時排列碼與空間調變的表現,從結果中分析並探討空時排列碼實際 效能。


    Since the Multiple-Input Multiple-Output (MIMO) system is proposed, the technique becomes popular in the past decade because of the high channel capacity that it ob- tains. The spatial modulation (SM) is proposed, which has additional consideration about the energy efficiency, not only about the spectral efficiency. It means the power consumption of SM-MIMO is reduced in contrast to the spatial multiplexing systems. This thesis proposes a new transmission scheme for MIMO system based on the SM, is called Space-Time Permutation Code (STPC). STPC takes the advantage of the time diversity through the permutation modulation. The antenna selection across several time slots becomes the information for STPC, called permutation array (PA). STPC overcomes some difficult environments such as single receive antenna or highly corre- lated channel, which the conventional SM-MIMO is hard to apply. Moreover, STPC is flexible with the other transmission techniques such as Space-Time Coding (STC). The combination of STPC and STC makes the communication quality more reliable. Sphere decoding (SD) is introduced in this thesis, which is an efficiency decoder in contrast to Maximum Likelihood (ML) detector. And it keeps the decoding method to be optimal. The numerical simulation results present the comparison of STPC and the other trans- mission techniques. It shows that STPC is valuable to study further in the future, and apply in the Massive MIMO.

    1 Introduction 1 1.1 Multiple-Input Multiple-Output (MIMO) System . . . . . . . . . . . . . 1 1.2 Spatial Modulation Multiple-Input Multiple-Output System (SM-MIMO) 3 1.3 Space-Time Permutation Code (STPC) MIMO System . . . . . . . . . . 4 1.4 Motivation................................... 5 1.5 OrganizationofThesis ............................ 5 2 Spatial Modulation MIMO System 7 2.1 SM-MIMOSystemModel .......................... 7 2.2 TheConceptofSM-MIMO.......................... 8 2.3 AdvantagesandDisadvantagesofSM-MIMO. . . . . . . . . . . . . . . . 8 2.4 RelatedworksofSM-MIMO......................... 10 3 Space-Time Permutation Code (STPC) MIMO System 11 3.1 STPCSystemModel ............................. 12 3.2 TheConceptofSTPC ............................ 14 3.3 PermutationArray(PA) ........................... 15 3.3.1 HammingDistanceMatrix...................... 16 3.3.2 VariousTypesofPermutationArray ................ 18 3.4 ParametersofSTPC ............................. 19 3.4.1 TimeSlot ............................... 21 3.4.2 Modulation .............................. 22 3.4.3 ActiveAntennas ........................... 24 3.5 EncodingtheSTPCcodeword........................ 26 3.6 STPCwithSpace-TimeCoding(STC) ................... 29 3.7 SummariesofSTPCtransmission ...................... 32 Detector of STPC 35 4.1 SphereDecodingforSTPC.......................... 35 4.2 SortingSphereDecodingforSTPC ..................... 39 4.3 ImprovementofSphereDecodingforSTPC . . . . . . . . . . . . . . . . 40 5 Simulation 43 5.1 ComparisonofDifferentSTPCDesigns................... 43 5.2 Comparison of STPC Designs under Different Channel Condition . . . . 48 5.3 Comparison of STPC and SM-Related Techniques under Uncorrelated Channel.................................... 49 5.4 Comparison of STPC and SM-Related Techniques under Correlated Chan- nel....................................... 53 6 Conclusion 57

    [1] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of mimo channels,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 5, pp. 684–702, June 2003.
    [2] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-blast: an architecture for realizing very high data rates over the rich-scattering wireless chan- nel,” Signals, Systems, and Electronics, 1998. (ISSSE 98) 1998 URSI International Symposium on.
    [3] M. D. Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for generalized mimo: Challenges, opportunities, and implementation,” Proceeding of the IEEE, vol. 102, no. 1, pp. 56–103, January 2014.
    [4] R. Y. Mesleh, S. S. H. Haas, C. W. Ahn, , and S. Yun, “Spatial modulation,” in IEEE Trans. Veh. Technol., vol. 57, no. 4, July 2008, pp. 2228–2241.
    [5] D. A. Basnayaka and H. Haas, “Spatial modulation for massive mimo,” Wireless Communications Symposium, June 2015.
    [6] D. G. Fang, in Antenna Theory and Microstrip Antennas, 2010.
    [7] M. D. Renzo and H. Haas, “Bit error probability of sm-mimo over generalized fading channels,” IEEE Transactions on Vehicular Technology, vol. 61, no. 3, pp. 1124–1144, March 2012.
    [8] Abdelhamid Younis, Nikola Serafimovski, Raed Mesleh and Harald Haas, “Gen- eralised Spatial Modulation,” in Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference, 2010, pp. 1498– 1502.
    [9] Jinlin Fu, Chunping Hou, Wei Xiang, Lei Yan, and Yonghong Hou, “Generalised Spatial Modulation with Multiple Active Transmit Antennas,” in GLOBECOM Workshops (GC Wkshps), 2010 IEEE, 2010, pp. 839–844.
    [10] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space shift keying modulation for mimo channels,” IEEE Transactions on Wireless Communications, vol. 8, no. 7, pp. 3692–3703, July 2009.
    [11] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Generalized space shift keying modulation for mimo channels,” IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, September 2008.
    [12] E. Ba ̧sar, U ̈mit Ayg ̈olu ̈, E. Panayırcı, and H. V. Poor, “Space-time block coded spatial modulation,” IEEE Tansactions on Communications, vol. 59, no. 3, pp. 823–832, March 2011.
    [13] Z. D. Miaowen Wen, X. Cheng, H. V. P. Yuyang Bian, and B. Jiao, “Performance analysis of differential spatial modulation with two transmit antennas,” IEEE Com- munication Letters, vol. 18, no. 3, pp. 475–478, March 2014.
    [14] Longzhuang He, Jintao Wang and Jian Song, “Extended Spatial Modulation Scheme with Low Complexity Detection Algorithms,” in Wireless Communications and Mobile Computing Conference (IWCMC), 2014 International, Aug 2014, pp. 582–587.
    [15] H. C. Ferreira, A. J. H. Vinck, T. G. Swart, and I. de Beer, “Permutation trellis codes,” IEEE Tansactions on Communications, vol. 53, no. 11, pp. 1782–1789, November 2005.
    [16] I-Wei Lai, Chia-Han Lee, Kwang-Cheng Chen, and E. Biglieri, “Path-permutation codes for end-to-end transmission in ad hoc cognitive radio networks,” IEEE Tans- actions on Wireless Communications, vol. 14, no. 6, pp. 3309–3321, June 2015.
    [17] S. M. Alamouti, “A simple transmit diversity technique for wireless communica- tions,” IEEE Journal on Select areas in Communications, vol. 16, no. 8, pp. 1451– 1458, October 1998.
    [18] H. Jafarkhani, in Space-Time Coding Theory and Practice, 2005.
    [19] U. Fincke and M. Pohst, “Improved methods for calculating vectors of short length in a lattice, including a complexity analysis,” Mathmetic of Computation, vol. 44, no. 170, pp. 463–471, April 1985.
    [20] A. Younis, S. Sinanovi, M. D. Renzo, R. Mesleh, and H. Haas, “Generalised sphere decoding for spatial modulation,” IEEE Tansactions on Communications, vol. 61, no. 7, pp. 2805–2815, July 2013.
    [21] E. Agrell, T. Erikson, A. Vardy, and K. Zeger, “Closest point search in lattices,” IEEE Tansactions on Information Theory, vol. 48, no. 8, pp. 2201–2214, August 2002.
    [22] W. Zhao and G. B. Giannakis, “Sphere decoding algorithms with improved radius search,” IEEE Tansactions on Communications, vol. 53, no. 7, pp. 1104–1109, July 2005.
    [23] A. van Zelst and J. Hammerschmidt, “A single coefficient spatial correlation model for multip-input multiple-output (mimo) radio channels,” 2002.
    [24] S. L. Loyka, “Channel capacity of mimo architecture using the exponential correla- tion matrix,” IEEE Communications Letters, vol. 5, no. 9, pp. 369–371, November 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE