研究生: |
黃健朝 Huang, Chien-Chao |
---|---|
論文名稱: |
高分子機械性質與應力對矽半導體元件電性的影響 Mechanical Properties of Polymers and the Effect of Stress on Electrical Properties of Silicon Semiconductor Devices |
指導教授: |
李三保
Lee, Sanboh |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 高分子 、矽半導體 、應力 、黏彈性 、彈性常數 、雷射高溫退火 、短通道效應 、擴散係數 、應變矽技術 、奈米線 |
外文關鍵詞: | Polymer, Silicon, Stress, viscoelastic, elastic constant, laser annealing, short channel effect, diffusivity, strained Si, nanowire |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文分為自組裝單分子(SAM)特性與應用、材料應力與機械性質對矽半導體元件電性影響及黏彈性高分子材料在奈米壓痕的潛變行為之研究。首先建立在Laplace-Kelvin理論模型基礎,利用針尖形狀的等效曲率公式來成功描述在相對濕度環境對不同矽烷SAM表面自由能,其原子力顯微鏡(AFM)探針與試片間的附著力。實驗製作 21至54 mJ/m2的表面自由能梯度,結果說明矽烷SAM的黏附力對應到相對溼度曲線的上升速率及大小皆與表面自由能有強烈關係,這些效應皆可在本模型充分證明。而矽基材表面所形成Octyldimethylchlorosilane (ODS) SAM,此ODS氧化程度會隨著UV/O3曝光時間越長,產生較多氧化性群體,如OH、C = O和羧基(COOH)等,可改變表面特性,並測試與蛋白質及DNA等生物分子的結合成效,AFM影像分析結果顯示出有高密度接合的成果。
第二部分是發展讓接觸洞蝕刻停止層應力(CESL)傳遞效率的增強技術,在n型金氧半場效電晶體元件(MOS)施加具有張應力CESL,結果發現高楊氏係數的間隙壁比低楊氏係數的間隙壁,能夠有效改善元件的汲極電流(或元件效能),透過應力模擬也得到相同結果。另外發展兩種來控制奈米元件短通道效應的技術,首先利用決定短通道效應的源/汲極延伸區域上方的間隙壁,改變其材料內應力來產生源/汲極延伸區域的誘發應力,藉此誘發應力來影響源/汲極延伸區域摻雜離子的擴散係數,實驗結果發現n型及p型MOS臨界電壓值(threshold voltage) 皆會產生改變。第二種方式為形成L型的壓應力間隙壁以研究高速雷射退火的雜質活化,從應力模擬結果發現在源汲極擴展接面區域,此新結構相較於傳統氮化矽及氧化層雙層間隙壁結構,會使該區域的壓應力環境改變為張應力。實驗結果發現,L型間隙壁結構比雙層間隙壁結構具有較低接面漏電流。
最後傳統潛變試驗有三個階段潛變曲線觀察。而本文探討黏彈性高分子材料在奈米壓痕技術對不同加載速率測試實驗的初級階段及第二階段潛變,利用5種高分子材料潛變實驗的位移-時間曲線成功以Burgers模型說明第一階段潛變的實驗結果,若加入塑性變形量於Burgers模型後,也成功描述了第二階段的潛變行為。
[1] H.J. Butt, B. Cappella, and M. Kappl: Force measurements with the atomic force microscope: Technique, interpretation and applications., Surf. Sci. Rep. 59, 1 (2005).
[2] C.D. Frisbie, L.F. Rozsnyai, A. Noy, M.S. Wrighton, and C.M. Lieber: Functional group imaging by chemical force microscopy, Science 265, 2071 (1994).
[3] R. Mckendry, M.E. Theoclitou, T. Rayment, and C. Abell: Chiral discrimination by chemical force microscopy, Nature 391, 566 (1998).
[4] A. Noy, D.V. Vezenov, and C.M. Lieber: Chemical force microscopy, Annu. Rev. Mater. Sci. 27, 381 (1997).
[5] S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung, and C.M. Lieber: Covalently functionalized nanotubes as nanometresized probes in chemistry and biology, Nature 394, 52 (1998).
[6] F.L. Leite and P.S.P. Herrmann: Application of atomic force spectroscopy (AFS) to studies of adhesion phenomena: A review, J. Adhes. Sci. Technol. 19, 365 (2005).
[7] M. Binggeli and C.M. Mate: Influence of capillary condensation of water on nanotribology studied by force microscopy, Appl. Phys. Lett. 65, 415 (1994).
[8] M. He, A.S. Blum, D.E. Aston, C. Buenviaje, R.M. Overney, and R. Luginbu¨ hl: Critical phenomena of water bridges in nanoasperity contacts, J. Chem. Phys. 114, 1355 (2001).
[9] J. Hu, X.D. Xiao, D.F. Ogletree, and M. Salmeron: Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution, Science 268, 267 (1995).
[10] L. Xu, A. Lio, J. Hu, D.F. Ogletree, and M. Salmeron: Wetting and capillary phenomena of water on mica, J. Phys. Chem. B 102, 540 (1998).
[11] X. Xiao and L. Qian: Investigation of humidity-dependent capillary force, Langmuir 16, 8153 (2000).
[12] D.L. Sedin and K.L. Rowlen: Adhesion forces measured by atomic force microscopy in humid air, Anal. Chem. 72, 2183 (2000).
[13] O.H. Pakarinen, A.S. Foster, M. Paajanen, T. Kalinainen, J. Katainen, I. Makkonen, J. Lahtinen, and R.M. Nieminen: Towards an accurate description of the capillary force in nanoparticle-surface interactions, Modell. Simul. Mater. Sci. Eng. 13, 1175 (2005).
[14] M. Paajanen, J. Katainen, O.H. Pakarinen, A.S. Foster, and J. Lahtinen: Experimental humidity dependency of small particle adhesion on silica and titania, J. Colloid Interface Sci. 304, 518 (2006).
[15] L. Sirghi, N. Nakagiri, K. Sugisaki, H. Sugimura, and O. Takai: Effect of sample topography on adhesive force in atomic force spectroscopy measurements in air, Langmuir 16, 7796 (2000).
[16] R. Jones, H.M. Pollock, J.A.S. Cleaver, and C.S. Hodges: Adhesion forces between glass and silicon surfaces in air studied by AFM: Effects of relative humidity, particle size, roughness, and surface treatment, Langmuir 18, 8045 (2002).
[17] A.A. Feiler, P. Jenkins, and M. Rudland: Effect of relative humidity on adhesion and frictional properties of micro- and nanoscopic contacts, J. Adhes. Sci. Technol. 19, 165 (2005).
[18] A.A. Feiler, J. Stiernstedt, K. Theander, P. Jenkins, and M. Rudland: Effect of capillary condensation on friction force and adhesion, Langmuir 23, 517 (2007).
[19] D.B. Asay and S.H. Kim: Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient, J. Chem. Phys. 124, 174712 (2006).
[20] J. Jang, M. Yang, and G. Schatz: Microscopic origin of the humidity dependence of the adhesion force in atomic force microscopy, J. Chem. Phys. 126, 174705 (2007).
[21] M. Farshchi-Tabrizi, M. Kappl, Y. Cheng, J. Gutmann, and H-J. Butt: On the adhesion between fine particles and nanocontacts: An atomic force microscope study, Langmuir 22, 2171 (2006).
[22] L. Chen, X. Gu, M.J. Fasolka, J.W. Martin, and T. Nguyen: Effects of humidity and sample surface free energy on AFM probe–sample interactions and lateral force microscopy image contrast, Langmuir 25, 3494 (2009).
[23] T. Nguyen, X. Gu, L. Chen, M. Fasolka, K. Briggman, J. Hwang, and J. Martin: Effects of surface functionality and humidity on the adhesion force and chemical contrast measured with AFM, Mater. Res. Soc. Symp. 833E, O15.5 (2005).
[24] D.C. Hurley, M. Kopycinska-Mu¨ller, D. Julthongpiput, and M.J. Fasolka: Influence of surface energy and relative humidity on AFM nanomechanical contact stiffness, Appl. Surf. Sci. 253, 1274 (2006).
[25] F. Schreiber: Self-assembled monolayers: From simple model systems to biofunctionalized interfaces, J. Phys. Condens. Matter.16, R881 (2004).
[26] D.V. Vezenov, A.V. Zhuk, G.M. Whitesides, and C.M. Lieber: Chemical force spectroscopy in heterogeneous systems: Intermolecular interactions involving epoxy polymer, mixed monolayers, and polar solvents, J. Am. Chem. Soc. 124, 10578 (2002).
[27] N.J. Brewer and G.J. Leggett: Chemical force microscopy of mixed self-assembled monolayers of alkanethiols on gold: Evidence for phase separation, Langmuir 20, 4109 (2004).
[28] J. Israelachvili: Intermolecular and Surface Forces, 2nd ed. (Academic Press Inc., San Diego, 1992).
[29] F.M. Orr, L.E. Scriven, and A.P. Rivas: Pendular rings between solids: Meniscus properties and capillary force, J. Fluid Mech. 67, 723 (1975).
[30] K-T. Wan, D.T. Smith, and B.R. Lawn: Fracture and contact adhesion energies of mica-mica, silica-silica, and mica-silica interfaces in dry and moist atmospheres, J. Am. Ceram. Soc. 75, 667 (1992).
[31] A. Marmur: Tip-surface capillary interactions, Langmuir 9, 1922 (1993).
[32] A. de Lazzer, M. Dreyer, and H.J. Rath: Particle–surface capillary forces, Langmuir 15, 4551 (1999).
[33] D. Julthongpiput, M.J. Fasolka, W.H. Zhang, T. Nguyen, and E.J. Amis: Gradient chemical micro patterns: A reference substrate for surface nanometrology, Nano Lett. 5, 1535 (2005).
[34] S.V. Roberson, A.J. Fahey, A. Sehgal, and A. Karim: Multifunctional ToF-SIMS: Combinatorial mapping of gradient energy substrates, Appl. Surf. Sci. 200, 150 (2002).
[35] S. Wu: Polymer Interface and Adhesion, 3rd ed. (Marcel Dekker Inc. Press, New York, 1982), p. 181.
[36] Z. Wei and Y-P. Zhao: Growth of liquid bridge in AFM, J. Phys. D: Appl. Phys. 40, 4368 (2007).
[37] E. Embree, M.R. Vanlandingham, and J.W. Martin: Humidity chamber for scanning stylus atomic force microscope with cantilever tracking. U.S. Patent No. 6.490.913.B1 (2002).
[38] V.A. Hackley and S.G. Malghan: The surface chemistry of silicon nitride powder in the presence of dissolved ions, J. Mater. Sci. 29, 4420 (1994).
[39] X. Gu, L. Chen, C. Xu, D. Julthongpiput, M.J. Fasolka, and T. Nguyen: Effect of relative humidity on chemical heterogeneity imaging with atomic force, microscopy, in Nanoscale Phenomena in Functional Materials by Scanning Probe Microscopy, edited by L. Degertekin (Mater. Res. Soc. Symp. Proc. 1025E, Warrendale, PA, 2008), 1025–B16-10.
[40] L. Sirghi, M. Nakamura, Y. Hatanaka, and O. Takai: Atomic force microscopy study of the hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering and plasma enhanced chemical vapor depositions, Langmuir 17, 8199 (2001).
[41] J. Jang, M. Yang, and G. Schatz: Microscopic origin of the humidity dependence of the adhesion force in atomic force microscopy, J. Chem. Phys. 126, 174705 (2007).
[42] Y. Cui, Q. Wei, H. Park, C. M. Lieber: Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science 293, 1289 (2001).
[43] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C. M. Lieber : Electrical detection of single viruses, PNAS 101, 14017 (2004).
[44] J. Hahm and C. M. Lieber: Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors, Nano Letters 4, 51 (2004).
[45] W. U. Wang, C. Chen, K. Lin, Y. Fang, and C. M. Lieber: Label-free detection of small-molecule–protein interactions by using nanowire nanosensors, PNAS 102, 3208 (2005).
[46] A. Star, J.-C. P. Gabriel, K. Bradley, and G. Gruner : Interaction of Aromatic Compounds with Carbon Nanotubes: Correlation to the Hammett parameter of the substituent and measured carbon nanotube FET response, Nano Lett. 3, 459 (2003).
[47] S. Park, T. A. Taton, and C. A. Mirkin: Array-Based Electrical Detection of DNA Using Nanoparticle Probes, Science 295, 1703 (2002).
[48] A. D. McFarland, and R. P. Van Duyne: Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity, Nano Lett. 3, 1057 (2003).
[49] S. R. Nicewarner-Pena, R. Griffth-Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan: Submicrometer metallic barcodes, Science 294, 137 (2001).
[50] F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, and C. M. Lieber: Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays, Science 313, 1100 (2001).
[51] H. Y. Chen, C. C. Chen, F. K. Hsueh, J. T. Liu, C. Y. Shen, C. C. Hsu, S. L. Shy, B. T. Lin, H. T. Chuang, C. S. Wu, C. Hu, C. C. Huang and F. L. Yang: 16nm Functional 0.039mm2 6T-SRAM Cell with Nano Injection Lithography, Nanowire Channel, and Full TiN Gate-, IEDM Digest, 958 (2009).
[52] H.C. Lin, C.-J. Su, C.Y. Hsiao, Y.S. Yang and T.Y. Huang: Water passivation effect on polycrystalline silicon nanowires, Appl. Phys. Lett. 91, 202113 (2007).
[53] R. E. Shiner, J. M. Caywood, and B. L. Euzent, Proc. 18th IEEE IRPS, 238 (1980).
[54] S. Shuto, M. Tanaka, M. Sonoda, T. Idaka, K. Sasaki, and S. Mori : Process Impact of passivation film deposition and post-annealing on the reliability of flash memories, 35th IEEE IRPS, 17 (1997).
[55] D. R. Kim, C. H. Lee, and X. Zheng: Probing Flow Velociety with Silicon Nanowire Sensors, Nano Lett. 9, 1984 (2009).
[56] F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng, and C. M. Lieber: Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays, Science 313, 1100 (2001).
[57] M.-P. Lu , C.-Y. Hsiao , P.-Y. Lo, J.-H. Wei, Y.-S. Yang, and M.-J Chen: Single-walled carbon nanotubes exposed to distilled water and aqueous solution: electrical measurement and theoretical calculation, Appl. Phys. Lett. 88, 053114-1 (2006).
[58] C. H. Ge, C. C. Lin, C. H. Ko, C. C. Huang, Y. C. Huang, B. W. Chan, B. C. Perng, C. C. Sheu, P. Y. Tsai, L. G. Yao, C. L. Wu, T. L. Lee, C. J. Chen, C. T. Wang, S. C. Lin, Y. C. Yeo, and C. Hu: Process strained Si (PSS) CMOS technology featuring 3D strain engineering, in IEDM Tech. Dig. ,73 (2003).
[59] C. H. Diaz , K. H. Fung, S. M. Cheng, K.L.Cheng, S. W. Wang, H. T. Huang, Y. K. Leung, M. H. Tsai, C. C. Wu, C.C. Lin, Mi-Chang Chang, and D. Tang: Device Properties in 90nm and beyond and Implications on Circuit Design, in IEDM Tech. Dig., 43 (2003).
[60] A. Shimizu, K. Hachimine, N. Ohki, H. Ohta, M. Koguchi, Y. Nonaka, H. Sato, and F. Ootsuka, Y. Nonaka, H. Sato, and F. Ootsuka: Local Mechanical-Stress Control (LMC) : A New Technique for CMOS Performance Enhancement, in IEDM Tech. Dig., 433 (2001).
[61] S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, Z. Ma, B. Mcintyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy: A logic nanotechnology featuring strained-silicon, IEEE Electron Device Lett. 25, 191 (2004)..
[62] K. Goto, S. Satoh, H. Ohta, S. Fukuta, T. Yamamoto, T. Mori, Y. Tagawa, T. Sakuma, T. Saiki, Y. Kim, H. Kokura, N. Tamura, N. Horiguchi, M. Kojima, T. Sugii, and K. Hashimoto: Technology booster using strain enhancing laminated SiN (SELS) for 65 nm node HP MPUs, in IEDM Tech. Dig., 209 (2004).
[63] C. H. Chen, T.L. Lee, T.H. Hou, C.L. Chen, C.C. Chen, J.W. Hsu, K.L. Cheng, Y.H.Chiu, H.J, Tao, Y. Jin, C.H. Diaz, S.C. Chen, and M.-S. Liang: Stress Memorization Technique (SMT) by Selectively Strained-Nitride Capping for Sub-65nm High-Performance Strained-Si Device Application, in VLSI Symp. Tech. Dig., 56 (2004).
[64] C.C. Huang, Y.C. Yeo, S.C. Chen, F.L. Yang, and M.H. Chi: Design and Integration of Strained SiGe/Si Hetero-structure CMOS Transistors, in VLSI-TSA Symp., 23 (2005).
[65] Y. C. Yeo, Q. Lu, T.-J. King, C. Hu, T. Kawashima, M. Oishi, S. Mashiro, and J. Sakai: Enhanced performance in sub-100 nm CMOSFETs using strained epitaxial silicon-germanium, in IEDM Tech. Dig., 753 (2000).
[66] D. Colman, R. T. Bate and J. P. Mize: Mobility anisotropy and piezoresistance in silicon p-type inversion layers, J. Appl. Phys. 39, 1923 (1968).
[67] S. Suthram, J. C. Ziegert, T. Nishida and S. E. Thompson: Piezoresistance Coefficients of (100) Silicon nMOSFETs Measured at Low and High (~1.5 GPa) Channel Stress, IEEE Electron Device Lett. 28, 58 (2007).
[68] H. Irie, K. Kita, K. Kyuno and A. Toriumi: In-Plane Mobility Anisotropy and Universality under Uni-axial Strains in n- and p-MOS Inversion Layers on (100), (110), and (111) Si, in IEDM Tech. Dig., 225 (2004).
[69] F. L. Yang, et al, “A 65nm Node Strained SOI Technology with Slim Spacer,” in IEDM Tech. Dig., 627 (2003).
[70] T.-Y. Liow, K.-M. Tan, R. T. P. Lee, M. Zhu, K.-M. Hoe, G. S. Samudra, N. Balasubramanian, and Y.-C. Yeo: Spacer removal technique for boosting strain in n-channel FinFETs with silicon-carbon source and drain stressors, IEEE Electron Device Letters 29, 80 (2008).
[71] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe, S. Satoh, M. Kase, K. Hashimoto, and T. Sugii: MOSFET Current Drive Optimization Using Silicon Nitride Capping Layer for 65-nm Technology Node, in VLSI Symp. Tech. Dig., 54 (2004).
[72] Orain, S. Orain, V. Fiori, D. Villanueva, A. Dray, and C. Ortolland: Method for managing the stress due to the strained nitride capping layer in MOS transistors, IEEE Trans. Electron Devices 54, 814, (2007).
[73] O. Tabata, K. Kawahata, S. Sugiyama, and I. Igarashi: Mechanical property measurements of thin films using load-deflection of composite rectangular membranes, Sensors and Actuators 20, 135, (1989).
[74] S. D. Senturia, “Microsystem Design,” Kluwer Academic Publishers, Boston, 196 (2001).
[75] V. Senez, P. Ferreira, and B. Baccus: 2-D Simulation of Local Oxidation of Silicon: Calibrated Viscoelastic Flow Analysis, IEEE Trans. Electron Dev. 43, 720 (1996).
[76] NDL 90奈米元件技術服務平台。
[77] M.J. Aziz: Thermodynamics of diffusion under pressure and stress: Relation to point defect mechanisms, Appl. Phys. Lett. 70 , 2810 (1997).
[78] M. J. Aziz, Y. Zhao, H. J Gossmann, S. Mitha, S. P. Smith, and D. Schiferl: Pressure and stress effects on the diffusion of B and Sb in Si and Si-Ge alloys, Phys. Rev. B, Condens. Matter 73, 054101 (2006).
[79] F. L. Yang, D. H. Lee, H. Y. Chen, C. C. Chang, S. D. Liu, C. C. Huang, T. X. Chung, H. W. Chen, C. C. Huang, Y. H. Liu,C. C. Wu,C. C. Chen, S. C. Chen, Y. T. Chen, Y. H. Chen, C. J. Chen, B. W. Chan, P. F. Hsu, J. H. Shieh, H. J. Tao, Y. C. Yeo, Y. Li, J. W. Lee, P. Chen, M. S. Liang and Chenming Hu: 5nm-Gate Nanowire FinFET, in VLSI Symp.,196 (2004).
[80] T. Krishnamohan, D. Kim, S. Raghunathan and K. Saraswat: Double-Gate Strained-Ge Heterodtructure Tunneling FET (TFET) With Record High Drive Currents and <60mV/dec Subthreshold slope, in IEDM Tech. Dig., 947 (2008).
[81] A. Majumdar, Z. Ren, J. W. Sleight, D. Dobuzinsky, J. R. Holt, R. Veingalla, S. J. Koester, and W. Haensch: High-Performance Undoped-Body 8-nm-Thin SOI Field-Effect Transistors, IEEE Electron Device Lett. 29, 515 (2008).
[82] S. H. Jain, P. B. Griffin, J. D. Plummer, S. McCoy, J. Gelpey,. T. Selinger, and D. F. Downey: Low resistance, low-leakage ultrashallow p+-Junction Formation Using Millisecond Flash Anneals, IEEE Trans. Electron Devices 52, 1610 (2005).
[83] K. Osada, Y. Zaitsu, S. Matsumoto, M. Yoshida, E. Arai and T. Abe: Effects of stress in the deposited silicon nitride films on boron diffusion of silicon, J. Electrochem. Soc. 142, 202 (1995).
[84] S. Chaudhry and M.E. Law: The Stress Assisted Evolution of Point and. Extended Defects in Silicon, J. Appl. Phys. 82, 1138 (1997).
[85] S. T. Ahn, H. W. Kennel, J. D. Plummer and W. A. Tiller: Film stress-related vacancy supersaturation in silicon under low pressure chemical vapor deposited silicon nitride films, J. Appl. Phys. 64, 4914 (1988).
[86] Y. M. Sheu, S. J. Yang, C. C. Wang, C. S. Chang, L. P. Huang, T. Y. Huang, M. J. Chen, and C. H. Diaz: Modeling mechanical stress effect on dopant diffusion in scaled MOSFETs, IEEE Trans. Electron Devices 52, 30 (2005).
[87] C. Y. Hsieh and M. J. Chen: Electrical measurement of local stress and lateral diffusion near source/drain extension corner of uniaxially stressed n-MOSFETs, IEEE Trans. Electron Devices 55, 844 ( 2008).
[88] N. R. Zangenberg, J. Fage-Pedersen, J. L. Hansen, and A. N. Larsen: Boron and phosphorus diffusion in strained and relaxed Si and SiGe, J. Appl. Phys. 94, 3883 (2003).
[89] N. E. B. Cowern, P. C. Zlam, P. C. van der Sluis, D. J. Gravesteijn, and W. B. Boer: Diffusion in strained Si(Ge), Phys. Rev. Lett. 72, 2585 (1994).
[90] Majumdar, Z. Ren, J. W. Sleight, D. Dobuzinsky, J. R. Holt, R. Veingalla, S. J. Koester, and W. Haensch: High-Performance Undoped-Body 8-nm-Thin SOI Field-Effect Transistors, IEEE Electron Device Lett. 29, 515 (2008).
[91] A. Shima, T. Mine, K. Torii, and A. Hiraiwa: Enhancement of Drain Current in Planar MOSFETs by Dopant Profile Engineering Using Nonmelt Laser Spike Annealing, IEEE Trans. Electron Devices 54, 2953 (2007).
[92] C. F. Nieh, K.C. Ku, C. H. Chen, H. Huang, L. T.Wang, L. P. Huang, Y. M. Sheu, C. C. Wang, T. L. Lee, S. C. Chen, M. S. Liang and J. Gong: Millsecond Anneal and Short-Channel Effect Control in Si CMOS Transistor Performance, IEEE Electron Device Lett. 27, 969 (2006).
[93] Y. Takamura, E. H. Kim, S. H. Jain, P. B. Griffin and J. D. Plummer: The use of laser annealing to reduce parasitic series resistances in MOS devices, in Proc. Ion Implant. Technol. Conf. , 56 (2002).
[94] F. Liu, H. H.Wong, K.W. Ang, M. Zhu, X. Wang, D. M. Y. Lai, P. C. Lim, and Y. C. Yeo: Laser Annealing of Amorphous Germanium on Silicon-Germanium Source/Drain for Strain and Performance Enhancement in pMOSFETs, IEEE Electron Device Lett. 29, 885 (2008).
[95] E. Pop, S. Sinha, and K. E. Goodson: Proc. IEEE, 1587 (2006).
[96] A. Colin, P. Morin, F. Cacho, H. Bono, R. Beneyton, M. Bidaud, D. Mathiot and E. Fogarassy: Simulation of the sub-melt laser anneal process in 45 CMOS technology – Application to the thermal pattern effects, Mater. Sci. Eng. B 154-155, 31 (2008).
[97] H. J. Sung, I. M. Lu and S. C. Chang: Effect of Excimer Laser Annealing Through Oxide, in Proc. of ASID, 101 (1999).
[98] P. Hashemi, J. Derekhshandeh and S. Mohajerzadeh: Stress-assisted nickel-induced crystallization of silicon on glass, J. Vac. Sci. Technol. A 22, 966 (2004).
[99] M. Hossain, H. Abu-Safe, H. Naseem and W. Brown: Effect of stress on the aluminum-induced crystallization of hydrogenated amorphous silicon films, J. Mater. Res. 21, 2582 (2006).
[100] J. Park, S. Kwon, S. I. Jun, I. N. Ivanov, J. Cao, J. L. Musfeldt and P. D. Rack: Stress induced crystallization of hydrogenated amorphous silicon, Thin Solid Films 517, 3222 (2009).
[101] K. N. Tu, J. W. Mayer, and L. C. Feldman: Electronic Thin Film Science For Electrical Engineers and Materials Scientists, New York : Macmillan (1992)
[102] J. Alvarez-Quintana and J. Rodriguez-Viejo: Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample, Sensors Actuators A 142, 232 (2008).
[103] M. Bass, E. Van Stryland, D.R. Williams, and W. L. Wolfe: Handbook of Optics, Vol. II, McGraw-Hill, Chap. 33 (1995).
[104] T. Baak: Appl. Optics 21, 1069 (1982).
[105] C. K. Liu, S. Lee, L. P. Sung, and T. Nguyen: Load-displacement relations for nanoindentation of viscoelastic materials, Journal of Applied Physics 100, 033503 (2006).
[106] P. J. Wei, W. X. Shen, and J. F. Lin: Analysis and modeling for time-dependent behavior of polymers exhibited in nanoindentation tests, Journal of Non-Crystalline Solids 354 , 3911 (2008).
[107] G. Huang, and H. Lu: Measurements of Two Independent Viscoelastic Functions by Nanoindentation, Experimental Mechanics, 47, 87 (2007).
[108] W. C. Oliver, and G. M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research 19, 3 (2004).
[109] M. F. Doerner and W. D. Nix: A method for interpreting the data from depth-sensing indentation instrurments, Journal of Materials Research 1, 601 (1986).
[110] W. C. Oliver,and G. M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7, 1564 (1992).
[111] B. Tang, A. H. W. Ngan, and W. W. Lu: Viscoelastic effects during depth-sensing indentation of cortical bone tissues, Philosophical Magazine 86, 5653 (2006).
[112] A. Jager, R. Lackner, and J. Eberhardsteiner: Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account, Meccanica 42, 293 (2007).
[113] M. L. Oyen: Sensitivity of polymer nanoindentation creep measurements to experimental variables, Acta Materialia 55, 3633 (2007).
[114] S. T. Choi, S. J. Jeong, and Y. Y. Earmme: Modified-creep experiment of an elastomer film on a rigid substrate using nanoindentation with a flat-ended cylindrical tip, Scripta Materialia 58, 199-202, 2008.
[115] B. J. Briscoe, L. Fiori, and E. Pelillo: Nano-indentation of polymeric surfaces, Journal of Physics D: Applied Physics 31, 2395 (1998).
[116] G. Feng, and A. H. W. Ngan: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation, Journal of Materials Research 17, 660 (2002).
[117] B. Tang, and A. H. W. Ngan: Accurate measurement of tip–sample contact size during nanoindentation of viscoelastic materials, Journal of Materials Research 18, 1141 (2003).
[118] S. Yang, Y. W. Zhang, and K. Zeng: Analysis of nanoindentation creep for polymeric materials, Journal of Applied Physics 95, 3655 (2004).
[119] R. Seltzer, and Y. W. Mai: Depth sensing indentation of linear viscoelastic–plastic solids: A simple method to determine creep compliance, Engineering Fracture Mechanics 75, 4852 (2008).
[120] C. A. Tweedie, and K. J. V. Vliet: Contact creep compliance of viscoelastic materials via nanoindentation, Journal of Materials Research 21, 1576 (2006).
[121] B. Beake: Modelling indentation creep of polymers:a phenomenological approach, Journal of Physics D: Applied Physics 39, 4478 (2006).
[122] A. H. W. Ngan, and B. Tang : Viscoelastic effects during unloading in depth-sensing indentation, Journal of Materials Research 17, 2604 (2002).
[123] T. Y. Tsui, and G. M. Pharr: Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates, Journal of Materials Research 14, 292 (1999).
[124] R. Goodall, and T. W. Clyne: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature, Acta Materialia 54, 5489 (2006).
[125] F. Wang, P. Huang, and K. Xu: Strain rate sensitivity of nanoindentation creep in polycrystalline Al film on Silicon substrate, Surface and Coatings Technology 201, 5216 (2007).
[126] H. Lu, B. Wang, J. Ma, G. Huang, and H. Viswanathan: Measurement of Creep Compliance of Solid Polymers by Nanoindentation, Mechanics of Time-Dependent Materials 7, 189 (2003).
[127] M. R. VanLandingham, , N. K. Chang, P. L. Drzal, C. C.White, and S. H. Chang: Viscoelastic Characterization of Polymers Using Instrumented Indentation. I. Quasi-Static Testing, Journal of Polymer Science Part A: Polymer Chemistry 43, 1794 (2005).
[128] P. Berthoud, C. G'Sell, and J-M. Hiver: Elastic–plastic indentation creep of glassy poly(methyl methacrylate) and polystyrene: characterization using uniaxial compression and indentation tests, Journal of Physics D: Applied Physics 32, 2923 (1999).
[129] K. S. Chen, T. C. Chen, and K. S. Ou: Development of semi-empirical formulation for extracting materials properties from nanoindentation measurements: Residual stresses, substrate effect, and creep, Thin Solid Films 516, 1931 (2008).
[130] M. L. Oyen: Analytical techniques for indentation of viscoelastic materials, Philosophical Magazine 86, 5625 (2006).
[131] C. Y. Zhang, Y. W. Zhang, K. Y. Zeng, and L. Shen: Nanoindentation of polymers with a sharp indenter, Journal of Materials Research 20, 1597 (2005).
[132] M. L. Oyen: Spherical indentation creep following ramp loading, Journal of Materials Research 20, 2094 (2005).
[133] G. E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, Chapt. 13 (1998).
[134] W. Nowacki: Thermoelasticity, 2nd ed., Pergamon, Oxford, England (1986).
[135] I. N. Sneddon: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science 3, 47 (1965).
[136] J. R. Mercier, J. J. Aklonis, M. Litt, and A. V. Tobolsky: Viscoelastic Behavior of the Polycarbonate of Bisphenol A, Journal of Applied Polymer Science 9, 447 (1965).
[137] C. K. Liu, T. Nguyen, T. J. Yang, and S. Lee: Melting and chemical behaviors of isothermally crystallized gamma-irradiated syndiotactic polystyrene, Polymer 50, 499 (2009).
[138] J. R. M. Radok : Viscoelastic stress analysis, Quarterly Applied Mathematics 15, 198 (1957).
[139] E. H. Lee, and J. R. M. Radok : The contact problems for viscoelastic bodies. ASME, Journal of Applied Mechanics 27, 438 (1960).
[140] T. C. T. Ting: The contact stress between a rigid indenter and a viscoelastic half-space. ASME, Journal of Applied Mechanics 33, 845 (1966).
[141] L. Cheng, X. Xia, L. E. Scriven, and W. W. W. Gerberich: Spherical-tip indentation of viscoelastic material, Mechanics of Materials 37, 213 (2005).