研究生: |
施伊庭 Shih, Yi-Ting |
---|---|
論文名稱: |
可低溫共燒之Li2O-ZnO-B2O3玻璃+ Ba4(Nd0.85Bi0.15)9.33Ti18O54高介電陶瓷系統的成分設計與物理性質之研究 Composition Design and Physical Properties of Low-Temperature Cofired Li2O-ZnO-B2O3 glass + Ba4(Nd0.85Bi0.15)9.33Ti18O54 High-k Dielectric System |
指導教授: |
簡朝和
Jean, Jau-Ho |
口試委員: |
曾俊元
Tseng, Tseung-Yuen 林樹均 Lin, Su-Jien 李志浩 Lee, Chih-Hao 許志雄 Hsi, Chi-Shiung |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 179 |
中文關鍵詞: | 硼酸鹽玻璃 、低溫共燒陶瓷製程技術 、失效機制 、銀擴散 |
外文關鍵詞: | Borate glass, LTCC, Failure mechanism, Ag diffusion |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的LTCC製程技術以CFG的方法較為被廣泛地使用,其高頻微波的介電性質、燒結緻密溫度,需考量陶瓷固相與玻璃液相的材料選擇。為了達到低介電損失及低溫共燒的目的,陶瓷材料的選擇以類鎢青銅結構的Ba4(Nd0.85Bi0.15)9.33Ti18O54 (BNBT)作為基材,其具有較高品質因子與介電常數,以及相對小的共振頻率溫度係數。而玻璃材料的選擇則採用低熔點的Li2O-ZnO-B2O3 (LZB)玻璃系統,作為助燒劑。首先,於論文第一章主要介紹玻璃形成的結構理論、硼酸鹽玻璃系統以及Ba6-3xR8+2xTi18O54的陶瓷系統的結構與性質的關係,並回顧低溫共燒的製程技術以及所面臨的問題。而在論文的第二章,以三成分系鋰鋅硼酸鹽玻璃系統(Li2O-ZnO-B2O3, LZB)為研究對象,利用固態核磁共振儀(NMR)與X光吸收光譜術(XAS)作為玻璃結構主要的分析儀器。從11B MAS-NMR光譜分析顯示四配位硼佔有的比例(N4)與非架橋氧(NBO)的數目受到Li2O含量以及ZnO/B2O3比例影響。並藉由Zn K-edge的延伸X光吸收精細結構(EXAFS)分析,可知鋅的配位數大小約為3.01-3.64,暗示在LZB玻璃系統中,除了B2O3作為主要玻璃網絡形成劑之外,ZnO亦扮演形成劑之角色。此外,利用EI-Hofy、Mackenzie與Appen方法計算玻璃轉移溫度(Tg)、線性熱膨脹係數()、介電常數(r)與折射率(nD),並比較計算值與實驗值之間的差異,顯示理論計算的結果僅略大於實驗值,且其趨勢變化與實驗值一致,暗示上述理論計算的方法有助於LZB玻璃性質的預測與成分設計。
接著,論文第三章以添加LZB玻璃對BNBT陶瓷的燒結行為以及介電性質的分析。當添加10 vol%的LZB玻璃於BNBT陶瓷內(BNBT+LZB系統),可有效地將燒結緻密的溫度從1300oC降低至875-900oC。而BNBT+LZB系統的緻密性質與LZB玻璃的軟化溫度Ts、Td有關,玻璃軟化溫度的變化已在第二章有詳細地討論,其大小隨Li2O含量增加而下降,約為520-600oC之間,此結果可從BNBT+LZB系統的TMA收縮曲線觀察發現,顯示在軟化溫度範圍下開始出現明顯的線性收縮變化。此外,又從BNBT+LZB系統的顯微結構觀察及X光繞射結晶相分析,顯示LZB玻璃/BNBT陶瓷的介面在燒結過程產生反應,隨LZB玻璃組成的Li2O含量增加而生成雜相的比例降低,則殘留的LZB玻璃含量較多,導致BNBT+LZB系統的緻密度增加。對於90 vol% BNBT+10 vol% LZB 系統而言,在5-5.79 GHz的共振頻率下量測獲得的介電常數(r)約為55-70,品質因子(Q)與共振頻率(fr)的乘積(Q x fr)為1,000-3,000 GHz,而在25-80oC溫度範圍的共振頻率溫度係數(tf)為10-60 ppm/oC。
本文探討以銀為內電極的積層陶瓷電容器(MLCC)其受到溫度及電壓影響下所造成的失效機制。MLCC的介電層材料為陶瓷+玻璃的複合系統,成分組成為90 vol % Ba4(Nd0.85Bi0.15)9.33Ti18O54 (BNBT) +10 vol % Li2O-ZnO-B2O3 (LZB)的陶瓷玻璃系統,其可與Ag內電極低溫共燒於875-900oC,達到良好的緻密性。從I-V曲線及HALT的結果發現失效後的元件不再遵守歐姆定律,且元件隨著溫度或電壓提高而縮短了失效的時間(TTF)。藉由TEM/EDS的微觀結構觀察及成分鑑定、SIMS半定量分析銀的擴散活化能及擴散係數、以及阻抗頻譜模擬分析材料的等效電路模型,上述結果皆顯示Ag+離子在高溫或高電壓下的擴散與(電)遷移主要發生在LZB玻璃相上。
第一章
[1] B. E. Warren and J. Biscoe, “Fourier Analysis of X-ray Patterns of Soda-Silica Glass,” J. Am. Ceram. Soc., 21 [7] 259-65 (1938).
[2] W. H. Zachariasen, “The Atomic Arrangement in Glass,” J. Am. Chem. Soc., 54 3841-51 (1932).
[3] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics. 2nd ed.; pp. 56-61. John Wiley & Sons, New York, 1976.
[4] J. Zarzycki, Glasses and the Vitreous State; pp. 44-5. Cambridge University Press, New York, 1991.
[5] A. K. Varshneya, Fundamentals of Inorganic Glasses; pp. 32-6, 96-112, 183-210. Academic Press, New York, 1993.
[6] H. Scholze, Glass: Nature, Structure, and Properties; pp.45-50, 156-81. Springer-Verlag, New York, 1991.
[7] M. B. Volf, Chemical Approach to Glass; pp. 158-207. Elsevier, Amsterdam, Netherlands, 1984.
[8] H. Eckert, “Structural Characterization of Noncrystalline Solids and Glasses Using Solid-State NMR,” Prog. Nucl. Magn. Reson. Spectrosc., 24 159-293 (1992).
[9] J. F. Stebbins, “NMR Studies of Oxide Glass Structure”; pp.391-436 in Solid-State NMR Spectroscopy : Principles and Applications. Edited by M. J. Duer. Blackwell Science Ltd, Malden, MA, 2005.
[10] P. J. Bray, “NMR and NQR Studies of Boron in Vitreous and Crystalline Borates,” Inorg. Chim. Acta, 289 [1-2] 158-73 (1999).
[11] D. H. Lee and D. Y. Han, “Characterization of Borate Glasses Using Solid-State Nutation NMR,” J. Korean Phys. Soc., 32 [1] 93-6 (1998).
[12] S. Kroeker and J. F. Stebbins, “Three-Coordinated Boron-11 Chemical Shifts in Borates,” Inorg. Chem., 40 [24] 6239-46 (2001).
[13] J. F. Stebbins, P. D. Zhao, and S. Kroeker, “Non-Bridging Oxygens in Borate Glasses: Characterization by 11B and 17O MAS and 3QMAS NMR,” Solid State Nucl. Magn. Reson., 16 [1-2] 9-19 (2000).
[14] B. N. Meera and J. Ramakrishna, “Raman Spectral Studies of Borate Glasses,” J. Non-Cryst. Solids, 159 [1-2] 1-21 (1993).
[15] T. Furukawa and W. B. White, “Raman Spectroscopic Investigation of Sodium Borosilicate Glass Structure,” J. Mater. Sci., 16 [10] 2689-700 (1981).
[16] N. J. Kreidl, “Inorganic Glass-Forming System”; pp.160-91 in Vol. 1, Glass Science and Technology. Edited by D. R. Uhlmann and N. J. Kreidl. Academic Press, New York, 1983.
[17] J. E. Shelby, “Thermal Expansion of Alkali Borate Glasses,” J. Am. Ceram. Soc., 66 [3] 225-27 (1983).
[18] D. L. Griscom, “Borate Glass Structure”; pp. 1-149 in Materials Science Research, Vol. 12, Borate Glasses: Structure, Properties, and Applications. Edited by L. D. Pye, V. D. Frechette, and N. J. Kreidel. Plenum, New York, 1978.
[19] O. V. Mazurin, “Glass Properties: Compilation, Evaluation, and Prediction,” J. Non-Cryst. Solids, 351[12-13] 1103-12 (2005).
[20] I. A. Harris and P. J. Bray, “B11 NMR-Studies of Zinc Borate Compounds And Glasses,” Phys. Chem. Glasses, 25 [3] 69-75 (1984).
[21] K. S. Kim and P. J. Bray, “B11 NMR-Studies of Glasses in System MgO-Na2O-B2O3,” Phys. Chem. Glasses, 15 [2] 47-51 (1974).
[22] C. N. Reddy and R. P. S. Chakradhar, “Elastic Properties and Spectroscopic Studies of Fast Ion Conducting Li2O-ZnO-B2O3 Glass System,” Mater. Res. Bull., 42 [7] 1337-47 (2007).
[23] B. S. Kim, E. S. Lim, J. H. Lee, and J. J. Kim, “Effect of Structure Change on Thermal and Dielectric Characteristics in Low-Temperature Firing Bi2O3-B2O3-ZnO Glasses,” J. Mater. Sci., 42 [12] 4260-64 (2007).
[24] A. Bhargava, R. L. Snyder, and R. A. Condrate, “The Raman and Infrared Spectra of the Glasses in the System BaO-TiO2-B2O3,” Mater. Res. Bull., 22 [12] 1603-11 (1987).
[25] Y. J. Choi, J. H. Park, W. J. Ko, I. S. Hwang, J. G. Park, and S. Nahm, “Co-Firing and Shrinkage Matching in Low- and Middle- Permittivity Dielectric Compositions for a Low-Temperature Co-fired Ceramics System,” J. Am. Ceram. Soc., 89 [2] 562-67 (2006).
[26] Y. J. Seo, D. J. Shin, and Y. S. Cho, “Phase Evolution and Microwave Dielectric Properties of Lanthanum Borate-Based Low-Temperature Co-Fired Ceramics Materials,” J. Am. Ceram. Soc., 89 [7] 2352-55 (2006).
[27] S. G. Mhaisalkar, D. W. Readey, and S. A. Akbar, “Microwave Dielectric Properties of Doped BaTi4O9,” J. Am. Ceram. Soc., 74 [8] 1894-98 (1991).
[28] H. F. Zhou, H. Wang, Y. H. Chen, K. C. Li, and X. Yao, “Microwave Dielectric Properties of BaTi5O11 Ceramics Prepared by Reaction-Sintering Process with the Addition of CuO,” J. Am. Ceram. Soc., 91 [10] 3444-47 (2008).
[29] H.M. O’Bryan, J. Thomson Jr, and J. K. Plourde, “A New BaO-TiO2 Compound with Temperature-Stable High Permitivity and Low Microwave Loss,” J. Am. Ceram. Soc., 57 [10] 450-3 (1974).
[30] S. F. Wang, Y. F. Hsu, T. H. Ueng, C. C. Chiang, J. P. Chu, and C. Y. Huang, “Effects of Additives on the Microstructure and Dielectric Properties of Ba2Ti9O20 Microwave Ceramic,” J. Mater. Res., 18 [5] 1179-87 (2003).
[31] K. Wakino, K. Minai, and H. Tamura, “Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators,” J. Am. Ceram. Soc., 67 [4] 278-81 (1984).
[32] P. C. Osbond, R. W. Whatmore, and F. W. Ainger, “The Properties and Microwave Applications of Zirconium Titanate Stannate Ceramics,” Br. Ceram. Proc., 36 167-78 (1985).
[33] W. Wolfram and H. E. Gobel, “Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4 ceramics (x+y+z=4),” Mater. Res. Bull., 16 1455–63 (1981).
[34] H. Tamura, T. Konoike, Y. Sakabe, and K. Wakino, “Improved High Q Dielectric Resonators with Complex Perovskite Structure,” J. Am. Ceram. Soc., 67 [4] C59-C61 (1984).
[35] H. Matsumoto, H. Tamura, and K. Wakino, “Ba(Mg, Ta)O3-BaSnO3 High-Q Dielectric Resonator,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 30 [9B] 2347-49 (1991).
[36] Y. W. Kim, J. H. Park, and J. G. Park, “Local Cationic Ordering Behavior in Ba(Mg1/3Nb2/3)O3 Ceramics,” J. Eur. Ceram. Soc., 24 [6] 1775-79 (2004).
[37] H. Ohsato and M. Imaeda, “The Quality Factor of the Microwave Dielectric Materials Based on the Crystal Structure-as an Example: the Ba6-3xR8+2xTi18O54 (R = Rare Earth) Solid Solutions,” Mater. Chem. Phys., 79 [2-3] 208-12 (2003).
[38] H. Ohsato, “Science of Tungstenbronze-Type Like Ba6-3xR8+2xTi18O54 (R = Rare Earth) Microwave Dielectric Solid Solutions,” J. Eur. Ceram. Soc., 21 [15] 2703-11 (2001).
[39] D. Kolar, S. Gaberscek, Z. Stadler, and D. Suvorov, “High-Stability, Low-Loss Dielectrics in the System BaO-Nd2O3-TiO2-Bi2O3,” Ferroelectrics, 27 [1-4] 269-72 (1980).
[40] Y. C. Chen and C. L. Huang, “Microwave Dielectric Properties of Ba2-xSm4+2/3xTi9O26 Ceramics with Zero Temperature Coefficient,” Mater Sci Eng A Struct Mater., 334 [1-2] 250-6 (2002).
[41] V. Sivasubramanian, V. R. K. Murthy, and B. Viswanathan, “Microwave Dielectric Properties of Certain Simple Alkaline Earth Perovskite Compounds as a Function of Tolerance Factor,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 36 [1A] 194-97 (1997).
[42] Y. Konishi, “Novel Dielectric Wave-Guide Components-Microwave Applications of New Ceramic Materials,” Proc. IEEE, 79 [6] 726-40 (1991).
[43] R. G. Matveeva, M. B. Varfolomeev, and L. S. Ilyushchenko, “Refinement of the Composition and Crystalline-Structure of Ba3.75Pr9.5Ti18O54,” Zh. Neorg. Khim., 29 [1] 31-34 (1984).
[44] Kagomiya, M. Suzuki, K. Kakimoto, and H. Ohsato, “Microwave Dielectric Properties of Tungstenbronze Type Like (Ba1-Sr)6-3xR8+2xTi18O54 (R = Sm, Nd) Solid Solutions,” J. Eur. Ceram. Soc., 27 [8-9] 3059-62 (2007).
[45] M. Valant, D. Suvorov, and D. Kolar, “Role of Bi2O3 in Optimizing the Dielectric Properties of Ba4.5Nd9Ti18O54 based microwave ceramics,” J. Mater. Res., 11 [4] 928-31 (1996).
[46] J. S. Kim, C. I. Cheon, T. R. Park, and H. S. Shim, “Dielectric Properties and Crystal Structure of Ba6-3x(Nd, M)8+2xTi18O54 (M = La, Bi, Y) Microwave Ceramics,” J. Mater. Sci., 35 [6] 1487-94 (2000).
[47] M. Valant, I. Arcon, D. Suvorov, A. Kodre, T. Negas, and R. Frahm, “Extended X-Ray Absorption Fine Structure Study of Incorporation of Bi and Pb Atoms into the Crystal Structure of Ba4.5Nd9Ti18O54,” J. Mater. Res., 12 [3] 799-804 (1997).
[48] M. Mizuta, K. Uenoyama, H. Ohsato, S. Nishigaki, and T. Okuda, “Formation of Tungsten Bronze-Type (Ba6-3xSm8+2x)Ti18-yAlyO54 ( =1+y/36) Solid Solutions and Microwave Dielectric Properties,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 35 [9B] 5065-68 (1996).
[49] E. A. Nenasheva and N. F. Kartenko, “High Dielectric Constant Microwave Ceramics,” J. Eur. Ceram. Soc., 21 [15] 2697-701 (2001).
[50] A. R. Stokes and A. J. C. Wilson, “The Diffraction of X Rays by Distorted Crystal Aggregates-I,” Proc. Phys. Soc, 56 174-81 (1944).
[51] H. Ohsato, H. Kato, M. Mizuta, S. Nishigaki, and T. Okuda, “Microwave Dielectric Properties of the Ba6-3x(Sm1-y, Ry)8+2xTi18O54 (R = Nd and La) Solid Solutions with Zero Temperature Coefficient of the Resonant Frequency,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 34 [9B] 5413-17 (1995).
[52] S. F. Wang, Y. F. Hsu, Y. R. Wang, L. T. Cheng, Y. C. Hsu, J. P. Chu, and C. Y. Huang, “Densification, Microstructural Evolution and Dielectric Properties of Ba6-3x(Sm1-yNdy)8+2xTi18O54 Microwave Ceramics,” J. Eur. Ceram. Soc., 26 [9] 1629-35 (2006).
[53] Y. J. Wu and X. M. Chen, “Structures and Microwave Dielectric Properties of Ba6-3x(Nd, Biy)8+2xTi18O54 (x=2/3) Solid Solution,” J. Mater. Res., 16 [6] 1734-8 (2001).
[54] M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, and J. J. Santiago-Aviles, “Overview of Low Temperature Co-Fired Ceramics Tape Technology for Meso-System Technology (MsST),” Sens. Actuators, A, 89 [3] 222-41 (2001).
[55] M. Udovic, M. Valant, and D. Suvorov, “Phase Formation and Dielectric Characterization of the Bi2O3–TeO2 System Prepared in an Oxygen Atmosphere,” J. Am. Ceram. Soc., 87 [4] 591–7 (2004).
[56] A. Feteira and D. C. Sinclair, “Microwave Dielectric Properties of Low Firing Temperature Bi2W2O9 Ceramics,” J. Am. Ceram. Soc., 91 [4] 1338–41 (2008).
[57] M. Udovic, M. Valant, and D. Suvorov, “Dielectric Characterisation of Ceramics from the TiO2–TeO2 System,” J. Eur. Ceram. Soc., 21 [10-11] 1735–8 (2001).
[58] D. Zhou, H. Wang, L. X. Pang, C. A. Randall, and X. Yao, “Bi2O3–MoO3 Binary System: an Alternative Ultralow Sintering Temperature Microwave Dielectric,” J. Am. Ceram. Soc., 92 [10] 2242–6 (2009).
[59] D. Zhou, H. Wang, X. Yao, and L. X. Pang, “Microwave Dielectric Properties of Low Temperature Firing Bi2Mo2O9 Ceramic,” J. Am. Ceram. Soc., 91 [10] 3419–22 (2008).
[60] R. R. Tummala, “Ceramic and Glass-Ceramic Packaging in the 1990s,” J. Am. Ceram. Soc., 74 [2] 895-908 (1991).
[61] S. H. Knickerbocker, A. H. Kumar, and L. W. Herron, “Cordierite Glass-Ceramics for Multilayer Ceramic Packaging,” Am. Ceram. Soc. Bull., 72 [1] 90-5(1993).
[62] C. R. Chang and J. H. Jean, “Crystallization Kinetics and Mechanism of Low-Dielectric, Low-Temperature Cofirable CaO-B2O3-SiO2 Glass-Ceramics,” J. Am. Ceram. Soc., 82 [7] 1725-32 (1999).
[63] J. H. Jean, Y. C. Fang, S. X. Dai, R. F. Huang, and D. L. Wilcox Sr., “Devitrification Kinetics and Mechanism of K2O-CaO-SrO-BaO-B2O3-SiO2,” J. Am. Ceram. Soc., 84 [6] 1354-60 (2001).
[64] X. Y. Chen, W. J. Zhang, S. X. Bai, and Y. G. Du, “Densification and Characterization of SiO2-B2O3-CaO-MgO Glass/Al2O3 Composites for LTCC Application,” Ceram. Int., 39 [6] 6355-61 (2013).
[65] Y. Shimada, K. Utsumi, M. Suzuki, H. Takamizawa, M. Nitta, and T. Watari, “Low Firing Temperature Multilayer Glass-Ceramic Substrate,” IEEE Trans. Compon. Hybrids Manuf. Technol., 6 [4] 382-8 (1983).
[66] S. Nishigaki, S. Yano, J. Fukuda, M. Fukaya, and T. Fuwa, “A New Multilayered, Low-Temperature Firable Ceramic Substrate”; pp. 225-34 in ISHM 1985 Proceedings, International Society for Hybrid Microelectronics, Reston, VA, 1985.
[67] D. M. Mattox, S. R. Gurkovich, J. A. Olenick, and K. M. Mason, “Low Dielectric Constant, Alumina-Compatible, Co-Fired Multilayer Substrate,” Ceram. Eng. Sci. Proc., 9 [11-12] 1567-78 (1988).
[68] T. K. Gupta and J.H. Jean, “Principles of the Development of a Silica Dielectric for Microelectronic Packaging,” J. Mater. Res., 11 [1] 243-63 (1996).
[69] H. T. Kim, S. H. Kim, S. Nahm, J. D. Byun, and Y. Kim, “Low-Temperature Sintering and Microwave Dielectric Properties of Zinc Metatitanate-Rutile Mixtures using Boron,” J. Am. Ceram. Soc., 82 [10] 3043-8 (1999).
[70] J. I. Steinberg, S. J. Horowitz, and R. J. Bacher, “Low-Temperature Cofired Tape Dielectric Material Systems for Multilayer Interconnections”; pp. 31-9 in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices. Edited by J. B. Blum and W. R. Cannon. Am. Ceram. Soc., Westerville, OH, 1986.
[71] K. Niwa, N. Kamehara, H. Yokoyama, K. Yokouchi, and K. Kurihara, “Multilayer Ceramic Circuit Board with Copper Conductor”; pp. 41-7 in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices, Edited by J. B. Blum and W. R. Cannon. Am. Ceram. Soc., Westerville, OH, 1986.
[72] J. H. Jean and S. C. Lin, “Low-fire Processing of ZrO2-SnO2-TiO2 Ceramics,” J. Am. Ceram. Soc., 83 [3] 1417-22 (2000).
[73] Y. S. Su and J. H. Jean, “Low-Fire Processing of Microwave BaTi4O9 Dielectric with BaO-Li2O-B2O3-SiO2-ZnO Glass,” Jpn. J. Appl. Phys., 47 [9] 7254-56 (2008).
[74] S. Cho, D. W. Kim, J. R. Kim, and K. S. Hong, “Low-Temperature Sintering and Microwave Dielectric Properties of BaO∙(Nd1-xBix)2O3∙4TiO2 by the Glass Additions,” Ceram. Int., 30 [7] 1181-85 (2004).
[75] C. C. Huang and J. H. Jean, “Low-Fire Processing of CaTiO3 with 2ZnO-B2O3 Glass,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 43 [6A] 3516-20 (2004).
[76] D. W. Kim, D. G. Lee, and K. S. Hong, “Low-Temperature Firing and Microwave Dielectric Properties of BaTi4O9 with Zn-B-O Glass System,” Mater. Res. Bull., 36 [3-4] 585-95 (2001).
[77] M. Z. Jhou and J. H. Jean, “Low-Fire Processing of Microwave BaTi4O9 Dielectric with BaO-ZnO-B2O3 Glass,” J. Am. Ceram. Soc., 89 [3] 786-91 (2006).
[78] D. N. Kim, J. Y. Lee, J. S. Huh, and H. S. Kim, “Thermal and Electrical Properties of BaO-B2O3-ZnO Glasses,” J. Non-Cryst. Solids, 306 [1] 70-75 (2002).
[79] C. N. Reddy and R. P. S. Chakradhar, “Elastic Properties and Spectroscopic Studies of Fast Ion Conducting Li2O-ZnO-B2O3 Glass System,” Mater. Res. Bull., 42 [7] 1337-47 (2007).
[80] V. C. V. Gowda and R. V. Anavekar, “Elastic Properties and Spectroscopic Studies of Na2O-ZnO-B2O3 Glass System,” Bull. Mat. Sci., 27 [2] 199-205 (2004).
[81] O. Dernovsek, A. Naeini, G. Preu, W. Wersing, M. Eberstein, and W. A. Schiller, “LTCC Glass-Ceramic Composites for Microwave Application,” J. Eur. Ceram. Soc., 21 [10-11] 1693-7 (2001).
[82] C. C. Cheng, T. E. Hsieh, and I. N. Lin, “Microwave Dielectric Properties of Glass-Ceramic Composites for Low Temperature Co-Firable Ceramics,” J. Eur. Ceram. Soc., 23 [14] 2553-8 (2003).
[83] M. Z. Long, B. Tang, S. R. Zhang, and S. Q. Yu, “Influence of Ba-Zn-B Additives on the Sintering Behavior and Dielectric Properties of BaNd2Ti4O12 Ceramics,” Mater. Lett., 68 486-9 (2012).
[84] H. Kishi, Y. Mizuno, and H. Chazono, “Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 42 [1] 1-15 (2003).
[85] J. E. Sergent and C. A. Harper, Hybrid Microelectronics Handbook. 2nd ed.; pp. 3-1-38, McGraw-Hill, Inc., New York, 1995.
[86] C. C. Chou, C. S. Chen, P. C. Wu, K. C. Feng, and L. W. Chu, “Influence of Glass Compositions on the Microstructure and Dielectric Properties of Low Temperature Fired BaTi4O9 Microwave Material with Copper Electrodes in Reducing Atmosphere,” Ceram. Int., 38 S159-62 (2012).
[87] C. L. Chen, W. H. Lee, and W. C. J. Wei, “Sintering Behavior and Interfacial Analysis of Ni/Cu Electrode with BaTiO3 Particulates,” J. Electroceram., 14 [1] 25-36 (2005).
[88] C. C. Lin, W. C. J. Wei, C. Y. Su, and C. H. Hsueh, “Oxidation of Ni Electrode in BaTiO3 Based Multilayer Ceramic Capacitor (MLCC),” J. Alloy. Compd., 485 [1-2] 653-59 (2009).
[89] G. Y. Yang, S. I. Lee, Z. J. Liu, C. J. Anthony, E. C. Dickey, Z. K. Liu, and C. A. Randall, “Effect of Local Oxygen Activity on Ni-BaTiO3 Interfacial Reactions,” Acta Mater., 54 [13] 3513-23 (2006).
[90] K. B. Shim, N. T. Cho, and S. W. Lee, “Silver Diffusion and Microstructure in LTCC Multilayer Couplers for High Frequency Applications,” J. Mater. Sci., 35 [4] 813-20 (2000).
[91] N. J. Donnelly and C. A. Randall, “Refined Model of Electromigration of Ag/Pd Electrodes in Multilayer PZT Ceramics Under Extreme Humidity,” J. Am. Ceram. Soc., 92 [2] 405-10 (2009).
[92] S. Yang, J. Wu, and A. Christou, “Initial Stage of Silver Electrochemical Migration Degradation,” Microelectron. Reliab., 46 [9-11] 1915-21 (2006).
[93] T. I. Prokopowicz and A. R. Vaskas, “Research and Development, Intrinsic Reliability, Subminiature Ceramic Capacitors,” Final Rep. ECOM-90705-F, NTIS AD-864068, 1969.
[94] R. Munikoti and P. Dhar, “Highly Accelearted Life Tesing (HALT) for Multilayer Ceramic Capacitor Qualification,” IEEE Trans. Compon. Hybrids, Manuf. Technol., 11 [4] 342-5 (1988).
[95] S. Sato, Y. Nakano, A Sato and T. Nomura, “Effect of Y-Doping on Resistance Degradation of Multilayer Ceramic Capacitors with Ni Electrodes under the Highly Accelerated Life Test,” Jpn. J. Appl. Phys., 36 6016-20 (1997).
[96] A. C. Caballero, E. Nieto, P. Duran, C. Moure, M. Kosec, Z. Samardzija, and G. Drazic, “Ceramic-Electrode Interaction in PZT and PNN-PZT Multilayer Piezoelectric Ceramics with Ag/Pd 70/30 Inner Electrode,” J. Mater. Sci., 32 [12] 3257-62 (1997).
[97] J. C. Lin and J. Y. Chan, “On the Resistance of Silver Migration in Ag-Pd Conductive Thick Films under Humid Environment and Applied DC Field,” Mater. Chem. Phys., 43 [3] 256-65 (1996).
第二章
[1] P. J. Bray, “NMR and NQR Studies of Boron in Vitreous and Crystalline Borates,” Inorg. Chim. Acta, 289 [1-2] 158-73 (1999).
[2] H. Eckert, “Structural Characterization of Noncrystalline Solids and Glasses Using Solid-State NMR,” Prog. Nucl. Magn. Reson. Spectrosc., 24 159-293 (1992).
[3] J. F. Stebbins, “NMR Studies of Oxide Glass Structure”; pp.391-436 in Solid-State NMR Spectroscopy : Principles and Applications. Edited by M. J. Duer. Blackwell Science Ltd, Malden, MA, 2005.
[4] D. H. Lee and D. Y. Han, “Characterization of Borate Glasses Using Solid-State Nutation NMR,” J. Korean Phys. Soc., 32 [1] 93-96 (1998).
[5] C. N. Reddy and R. P. S. Chakradhar, “Elastic Properties and Spectroscopic Studies of Fast Ion Conducting Li2O-ZnO-B2O3 glass system,” Mater. Res. Bull., 42 [7] 1337-47 (2007).
[6] V. C. V. Gowda and R. V. Anavekar, “Elastic Properties and Spectroscopic Studies of Na2O-ZnO-B2O3 Glass System,” Bull. Mat. Sci., 27 [2] 199-205 (2004).
[7] I. Tanaka, T. Mizoguchi, and T. Yamamoto, “XANES and ELNES in Ceramic Science,” J. Am. Ceram. Soc., 88 [8] 2013-29 (2005).
[8] Y. H. Wu, K. C. Hsu, and C. H. Lee, “Study of Relationships among Synthesis, Microstructure and Mechanical Properties of Lithium Aluminosilicate Glass-Ceramics Containing ZnO and MgF2 by Synchrotron XRD and XANES,” J. Mater. Sci., 48 4427-4437 (2013).
[9] D. A. McKeown, I. S. Muller, A. C. Buechele, and I. L. Pegg, “Local Environment of Zn in Zirconium Borosilicate Glasses Determined by X-ray Absorption Spectroscopy,” J. Non-Cryst. Solids, 261 [1-3] 155-62 (2000).
[10] M. Le Grand, A. Y. Ramos, G. Calas, L. Galoisy, D. Ghaleb, and F. Pacaud, “Zinc Environment in Aluminoborosilicate Glasses by Zn K-Edge Extended X-Ray Absorption Fine Structure Spectroscopy,” J. Mater. Res., 15 [9] 2015-19 (2000).
[11] Y. M. Moustafa, H. Doweidar, and G. Eldamrawi, “Utiltzation of Infrared-Spectroscopy to Determine the Fraction of the 4 Coordinated Borons in Borate Glasses,” Phys. Chem. Glasses, 35 [2] 104-6 (1994).
[12] E. I. Kamitsos, A. P. Patsis, M. A. Karakassides, and G. D. Chryssikos, “Infrared Reflectance Spectra of Lithium Borate Glasses,” J. Non-Cryst. Solids, 126 [1-2] 52-67 (1990).
[13] J. Krogh-Moe, “Interpretation of the Infra-Red Spectra of Boron Oxide and Alkali Borate Glasses,” Phys. Chem. Glasses, 6 [2] 46-54 (1965).
[14] B. N. Meera and J. Ramakrishna, “Raman Spectral Studies of Borate Glasses,” J. Non-Cryst. Solids, 159 [1-2] 1-21 (1993).
[15] T. Furukawa and W. B. White, “Raman Spectroscopic Investigation of Sodium Borosilicate Glass Structure,” J. Mater. Sci., 16 [10] 2689-700 (1981).
[16] W. H. Zachariasen, “The Atomic Arrangement in Glass,” J. Am. Chem. Soc., 54 3841-51 (1932).
[17] A. K. Varshneya, Fundamentals of Inorganic Glasses; pp. 32-6, 96-112, 183-210. Academic press, New York, 1993.
[18] M. B. Volf., Mathematical approach to glass; pp. 45-53, 143-53, 251-65. Elsevier, Amsterdam, Netherlands, 1988.
[19] B. S. Kim, E. S. Lim, J. H. Lee, and J. J. Kim, “Effect of Structure Change on Thermal and Dielectric Characteristics in Low-Temperature Firing Bi2O3-B2O3-ZnO Glasses,” J. Mater. Sci., 42 [12] 4260-64 (2007).
[20] I. A. Harris and P. J. Bray, “B11 NMR-Studies of Zinc Borate Compounds And Glasses,” Phys. Chem. Glasses, 25 [3] 69-75 (1984).
[21] S. Kroeker and J. F. Stebbins, “Three-Coordinated boron-11 Chemical Shifts in Borates,” Inorg. Chem., 40 [24] 6239-46 (2001).
[22] J. F. Stebbins, P. D. Zhao, and S. Kroeker, “Non-Bridging Oxygens in Borate Glasses: Characterization by 11B and 17O MAS and 3QMAS NMR,” Solid State Nucl. Magn. Reson., 16 [1-2] 9-19 (2000).
[23] I. Priven and O. V. Mazurin, “Glass Property Databases: Their History, Present State, and Prospects for Further Development,” pp. 147-52. in Glass-the Challenge for the 21st Century, Vol. 39-40. Advanced Materials Research. Edited by M. Liska, D. Galusek, R. Klement, and V. Petruskova, 2008.
[24] Fluegel, “Glass Viscosity Calculation Based on a Global Statistical Modelling Approach,” Glass Technol.-Eur. J. Glass Sci. Technol. Part A, 48 [1] 13-30 (2007).
[25] Fluegel, “Statistical Regression Modelling of Glass Properties-a Tutorial,” Glass Technol.-Eur. J. Glass Sci. Technol. Part A, 50 [1] 25-46 (2009).
[26] I. Priven and O. V. Mazurin, “Comparison of Methods Used for the Calculation of Density, Refractive Index and Thermal Expansion of Oxide Glasses,” Glass Technol., 44 [4] 156-66 (2003).
[27] SmartData Software Co., Ltd., “GE-System (Glass Engineering System)” (2010) Accessed on: August 2013. Available at <http://www.smartdata.cn/en/default.htm>
[28] ITC Inc., “SciGlass 7.7 -Glass Property Information System” (2011) Accessed on: August 2013. Available at <http://www.sciglass.info>
[29] New Glass Forum, “INTERGLAD ver.7 International Glass Database System” (2009) Accessed on: August 2013. Available at <http://www.newglass.jp/interglad_n/gaiyo/info_e.html >
[30] M. El-Hofy, “Theoretical Model for Calculation of the Glass Transition Temperature Utilizing the Chemical Composition,” Glass Phys. Chem., 33 [1] 68-71 (2007).
[31] M. El-Hofy and I. Z. Hager, “Ionic Conductivity in Lithium Haloborate Glasses,” Phys. Status Solidi A-Appl. Res., 199 [3] 448-56 (2003).
[32] Makishima and J. D. Mackenzie, “Calculation of Thermal-Expansion Coefficient of Glasses,” J. Non-Cryst. Solids, 22 [2] 305-13 (1976).
[33] Makishima and J. D. Mackenzie, “Calculation of Bulk Modulus, Shear Modulus and Poissons Ration of Glass,” J. Non-Cryst. Solids, 17 [2] 147-57 (1975).
[34] Makishima and J. D. Mackenzie, “Direct Calculation of Young's Modulus of Glass," J. Non-Cryst. Solids, 12 [1] 35-45 (1973).
[35] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J. O. Durand, B. Bujoli, Z. Gan, and G. Hoatson, “Modelling One- and Two-Dimensional Solid-State NMR Spectra,” Magn. Reson. Chem., 40 70-76 (2002).
[36] B. Ravel, and M. Newville, “ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT,” J. Synchrotron Rad., 12 537-41 (2005).
[37] H. E. Hagy, “Experimental Evaluation of Beam-Bending Method of Determining Glass Viscosities in the Range 108 to 1015 Poises,” J. Am. Ceram. Soc., 46 [2] 93-7 (1963).
[38] E. D. Zanotto and A. R. Migliore Jr, “Viscous Flow of Glasses Forming Liquids : Experimental Techniques for the High Viscosity Range”; pp. 138-50 in Characterization Techniques of Glasses and Ceramic. Edited by J. M. Rincon and M. Romero. Springer-Verlag, Heidelberg, Germany, 1999.
[39] S. C. Abrahams, and J. L. Bernstei., “Remeasurement of structure of hexagonal ZnO.” Acta Crystallogr., Sect. B: Struct. Sci., 25 1233-6 (1969).
[40] H. Scholze, Glass: Nature, Structure, and Properties; pp.45-50, 156-81. Springer-Verlag, New York, 1991.
[41] L. G. Vanuitert, “Relations Between Melting-Point, Glass-Transition Temperature, and Thermal-Expansion for Inorganic Crystals and Glasses,” J. Appl. Phys., 50 [12] 8052-61 (1979).
[42] B. Bridge, and A. A. Higazy., “ A Model of the Compositional Dependence of the Elastic Moduli of Polycomponent Oxide Glasses.” Phys. Chem. Glasses., 27 [1] 1-14 (1986).
[43] O. A. Kondakova, A. S. Zyubin, and S. A. Dembovsky, “Quantum Chemical Modeling of the Structure and Ion Location in Chlorine-Doped Alkali-Borate Glasses,” Solid State Ion. 157 [1-4] 305-11 (2003).
[44] B. Bridge, “Coordination Numbers in BaO-ZnO-P2O5 Glasses Suggested by the Elastic Properties,” J. Mater. Sci. Lett., 6 [6] 736-40 (1987).
[45] C. A. Coulson and T. W. Dingle, “The B-O Bond Lengths in Boron-Oxygen Compounds,” Acta Crystallogr., B24 153-5 (1968).
[46] I. Z. Hager and M. El-Hofy, “Investigation of Spectral Absorption and Elastic Moduli of Lithium Haloborate Glasses,” Phys. Status Solidi A., 198 [1] 7-17 (2003).
[47] R. A. Swalin, Thermodynamics of Solids, 2nd ed.; pp. 57-64. Wiley, New York, 1972.
第三章
[1] R. R. Tummala, “Ceramic and Glass-Ceramic Packaging in the 1990s,” J. Am. Ceram. Soc., 74 [2] 895-908 (1991).
[2] S. H. Knickerbocker, A. H. Kumar, and L. W. Herron, “Cordierite Glass-Ceramics for Multilayer Ceramic Packaging,” Am. Ceram. Soc. Bull., 72 [1] 90-5(1993).
[3] C. R. Chang and J. H. Jean, “Crystallization Kinetics and Mechanism of Low-Dielectric, Low-Temperature Cofirable CaO-B2O3-SiO2 Glass-Ceramics,” J. Am. Ceram. Soc., 82 [7] 1725-32 (1999).
[4] J. H. Jean, Y. C. Fang, S. X. Dai, R. F. Huang, and D. L. Wilcox Sr., “Devitrification Kinetics and Mechanism of K2O-CaO-SrO-BaO-B2O3-SiO2,” J. Am. Ceram. Soc., 84 [6] 1354-60 (2001).
[5] X. Y. Chen, W. J. Zhang, S. X. Bai, and Y. G. Du, “Densification and Characterization of SiO2-B2O3-CaO-MgO Glass/Al2O3 Composites for LTCC Application,” Ceram. Int., 39 [6] 6355-61 (2013).
[6] Y. Shimada, K. Utsumi, M. Suzuki, H. Takamizawa, M. Nitta, and T. Watari, “Low Firing Temperature Multilayer Glass-Ceramic Substrate,” IEEE Trans. Compon. Hybrids Manuf. Technol., 6 [4] 382-8 (1983).
[7] S. Nishigaki, S. Yano, J. Fukuda, M. Fukaya, and T. Fuwa, “A New Multilayered, Low-Temperature Firable Ceramic Substrate”; pp. 225-34 in ISHM 1985 Proceedings, International Society for Hybrid Microelectronics, Reston, VA, 1985.
[8] D. M. Mattox, S. R. Gurkovich, J. A. Olenick, and K. M. Mason, “Low Dielectric Constant, Alumina-Compatible, Co-Fired Multilayer Substrate,” Ceram. Eng. Sci. Proc., 9 [11-12] 1567-78 (1988).
[9] T. K. Gupta and J.H. Jean, “Principles of the Development of a Silica Dielectric for Microelectronic Packaging,” J. Mater. Res., 11 [1] 243-63 (1996).
[10] H. T. Kim, S. H. Kim, S. Nahm, J. D. Byun, and Y. Kim, “Low-Temperature Sintering and Microwave Dielectric Properties of Zinc Metatitanate-Rutile Mixtures using Boron,” J. Am. Ceram. Soc., 82 [10] 3043-8 (1999).
[11] J. I. Steinberg, S. J. Horowitz, and R. J. Bacher, “Low-Temperature Cofired Tape Dielectric Material Systems for Multilayer Interconnections”; pp. 31-9 in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices. ed. J. B. Blum and W. R. Cannon. Am. Ceram. Soc., Westerville, OH, 1986.
[12] K. Niwa, N. Kamehara, H. Yokoyama, K. Yokouchi, and K. Kurihara, “Multilayer Ceramic Circuit Board with Copper Conductor”; pp. 41-7 in Advances in Ceramics, Vol. 19, Multilayer Ceramic Devices, ed. J. B. Blum and W. R. Cannon. Am. Ceram. Soc., Westerville, OH, 1986.
[13] J. H. Jean and S. C. Lin, “Low-Fire Processing of ZrO2-SnO2-TiO2 Ceramics,” J. Am. Ceram. Soc., 83 [3] 1417-22 (2000).
[14] M. Udovic, M. Valant, and D. Suvorov, “Phase Formation and Dielectric Characterization of the Bi2O3–TeO2 System Prepared in an Oxygen Atmosphere,” J. Am. Ceram. Soc., 87 [4] 591–7 (2004).
[15] A. Feteira and D. C. Sinclair, “Microwave Dielectric Properties of Low Firing Temperature Bi2W2O9 Ceramics,” J. Am. Ceram. Soc., 91 [4] 1338–41 (2008).
[16] M. Udovic, M. Valant, and D. Suvorov, “Dielectric Characterisation of Ceramics from the TiO2–TeO2 System,” J. Eur. Ceram. Soc., 21 [10-11] 1735–8 (2001).
[17] D. Zhou, H. Wang, L. -X. Pang, C. A. Randall, and X. Yao, “Bi2O3–MoO3 Binary System: an Alternative Ultralow Sintering Temperature Microwave Dielectric,” J. Am. Ceram. Soc., 92 [10] 2242–6 (2009).
[18] D. Zhou, H. Wang, X. Yao, and L. -X. Pang, “Microwave Dielectric Properties of Low Temperature Firing Bi2Mo2O9 Ceramic,” J. Am. Ceram. Soc., 91 [10] 3419–22 (2008).
[19] C. C. Huang and J. H. Jean, “Low-Fire Processing of CaTiO3 with 2ZnO-B2O3 Glass,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 43 [6A] 3516-20 (2004).
[20] D. W. Kim, D. G. Lee, and K. S. Hong, “Low-Temperature Firing and Microwave Dielectric Properties of BaTi4O9 with Zn-B-O Glass System,” Mater. Res. Bull., 36 [3-4] 585-95 (2001).
[21] M. Z. Jhou and J. H. Jean, “Low-Fire Processing of Microwave BaTi4O9 Dielectric with BaO-ZnO-B2O3 Glass,” J. Am. Ceram. Soc., 89 [3] 786-91 (2006).
[22] D. N. Kim, J. Y. Lee, J. S. Huh, and H. S. Kim, “Thermal and Electrical Properties of BaO-B2O3-ZnO Glasses,” J. Non-Cryst. Solids, 306 [1] 70-5 (2002).
[23] S. Cho, D. W. Kim, J. R. Kim, and K. S. Hong, “Low-Temperature Sintering and Microwave Dielectric Properties of BaO∙(Nd1-xBix)2O3∙4TiO2 by the Glass Additions,” Ceram. Int., 30 [7] 1181-5 (2004).
[24] C. N. Reddy and R. P. S. Chakradhar, “Elastic Properties and Spectroscopic Studies of Fast Ion Conducting Li2O-ZnO-B2O3 Glass System,” Mater. Res. Bull., 42 [7] 1337-47 (2007).
[25] V. C. V. Gowda and R. V. Anavekar, “Elastic Properties and Spectroscopic Studies of Na2O-ZnO-B2O3 Glass System,” Bull. Mat. Sci., 27 [2] 199-205 (2004).
[26] Y. S. Su and J. H. Jean, “Low-Fire Processing of Microwave BaTi4O9 Dielectric with BaO-Li2O-B2O3-SiO2-ZnO Glass,” Jpn. J. Appl. Phys., 47 [9] 7254-6 (2008).
[27] H. Ohsato, “Science of Tungstenbronze-Type Like Ba6-3xR8+2xTi18O54 (R = Rare Earth) Microwave Dielectric Solid Solutions,” J. Eur. Ceram. Soc., 21 [15] 2703-11 (2001).
[28] J. S. Kim, C. I. Cheon, T. R. Park, and H. S. Shim, “Dielectric Properties and Crystal Structure of Ba6-3x(Nd, M)8+2xTi18O54 (M = La, Bi, Y) Microwave Ceramics," J. Mater. Sci., 35 [6] 1487-94 (2000).
[29] Y. J. Wu and X. M. Chen, “Structures and Microwave Dielectric Properties of Ba6-3x(Nd, Biy)8+2xTi18O54 (x=2/3) Solid Solution,” J. Mater. Res., 16 [6] 1734-8 (2001).
[30] O. Dernovsek, A. Naeini, G. Preu, W. Wersing, M. Eberstein, and W. A. Schiller, “LTCC Glass-Ceramic Composites for Microwave Application,” J. Eur. Ceram. Soc., 21 [10-11] 1693-7 (2001).
[31] C. C. Cheng, T. E. Hsieh, and I. N. Lin, “Microwave Dielectric Properties of Glass-Ceramic Composites for Low Temperature Co-Firable Ceramics,” J. Eur. Ceram. Soc., 23 [14] 2553-8 (2003).
[32] M. Z. Long, B. Tang, S. R. Zhang, and S. Q. Yu, “Influence of Ba-Zn-B Additives on the Sintering Behavior and Dielectric Properties of BaNd2Ti4O12 Ceramics,” Mater. Lett., 68 486-9 (2012).
[33] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IRE Transactions on Microwave Theory and Techniques, MTT-8, 402-10 (1960).
[34] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-loss Materials by the Dielectric Rod Resonator Method,” IEEE Transactions on Microwave Theory and Techniques, MTT-33, 586-92 (1985).
[35] M. N. Rahaman, Ceramic Processing and Sintering, 2nd ed.; pp. 621-96, CRC Press, New York, 2003.
[36] P. S. Turner, “Thermal-Expansion Stresses in Reinforced Plastics,” J. Res. Nat. Bur. Stand., 37 239-50 (1946).
[37] N. Santha, M. T. Sebastian, V. George, and J. Philip, “Microwave Dielectric and Elastic Properties of Glass-Added Ba6-3xR8+2xTi18O54 (x=2/3),” Mater. Chem. Phys., 100 [2-3] 423-9 (2006).
[38] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed.; pp. 947-9, John Wiley & Sons, New York, 1976.
[39] Y. L. Huang, D. C. Tsai, Y. C. Lee, D. R. Jung, and F. S. Shieu, “Effect of Annealing on Microstructure and Dielectric Properties of Zn2Ti3O8 Thin Films by Reactive Co-Sputtering,” Surf. Coat. Technol., 231 153-6 (2013).
[40] Y. Y. Wang, H. Zhang, V. P. Dravid, D. Shi, D. G. Hinks, Y. Zheng, and J. D. Jorgensen, “Evolution of the Low-Eenergy Excitations and Dielectric Function of Ba1-xKxBiO3 (0 ≤ x ≤ 0.5),” Phys. Rev. B, 47 [21] 14503-9 (1993).
[41] C. Franchini, A. Sanna, M. Marsman, and G. Kresse, “Structural, Vibrational, and Quasiparticle Properties of the Peierls Semiconductor BaBiO3: a Hybrid Functional and Self-Consistent GW+ Vertex-Corrections Study,” Phys. Rev. B, 81 [8] 1-7 (2010).
第四章
[1] C. R. Koripella and H. V. Dematos, “Fractography of Thermal-Shock-Cracked Multilayer Capacitors,” J. Am. Ceram. Soc., 72 [12] 2241-6 (1989).
[2] T. J. Lu and N. A. Fleck, “The Thermal Shock Resistance of Solids,” Acta Mater., 46 [13] 4755-68 (1998).
[3] Teverovsky, “Thermal-Shock Testing and Fracturing of MLCCs Under Manual-Soldering Conditions,” IEEE Trans. Device Mater. Reliab., 12 [2] 413-9 (2012).
[4] J. A. Vandenavyle and J. J. Mecholsky, “Analysis of Soldering-Induced Cracking of BaTiO3 Ceramic Capacitors,” Ferroelectrics, 50 [1-4] 619-24 (1983).
[5] R. K. Bordia and A. Jagota, “Crack Growth and Damage in Constrained Sintering Films,” J. Am. Ceram. Soc., 76 [10] 2475-85 (1993).
[6] C. Hillman, Z. G. Suo, and F. F. Lange, “Cracking of Laminates Subjected to Biaxial Tensile Stresses,” J. Am. Ceram. Soc., 79 [8] 2127-33 (1996).
[7] T. N. Cheng and R. Raj, “Flaw Generation During Constrained Sintering of Metal-Ceramic and Metal-Glass Multilayer Films,” J. Am. Ceram. Soc., 72 [9] 1649-55 (1989).
[8] C. H. Hsueh and A. G. Evans, “Residual Stresses and Cracking in Metal/Ceramic Systems for Microelectronics Packaging,” J. Am. Ceram. Soc., 68 [3] 120-7 (1985).
[9] R. K. Bordia and R. Raj, “Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate,” J. Am. Ceram. Soc., 68 [6] 287-92 (1985).
[10] H. Kishi, Y. Mizuno, and H. Chazono, “Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 42 [1] 1-15 (2003).
[11] C. C. Chou, C. S. Chen, P. C. Wu, K. C. Feng, and L. W. Chu, “Influence of Glass Compositions on the Microstructure and Dielectric Properties of Low Temperature Fired BaTi4O9 Microwave Material with Copper Electrodes in Reducing Atmosphere,” Ceram. Int., 38 S159-62 (2012).
[12] C. L. Chen, W. H. Lee, and W. C. J. Wei, “Sintering Behavior and Interfacial Analysis of Ni/Cu Electrode with BaTiO3 Particulates,” J. Electroceram., 14 [1] 25-36 (2005).
[13] C. C. Lin, W. C. J. Wei, C. Y. Su, and C. H. Hsueh, “Oxidation of Ni Electrode in BaTiO3 Based Multilayer Ceramic Capacitor (MLCC),” J. Alloy. Compd., 485 [1-2] 653-59 (2009).
[14] G. Y. Yang, S. I. Lee, Z. J. Liu, C. J. Anthony, E. C. Dickey, Z. K. Liu, and C. A. Randall, “Effect of Local Oxygen Activity on Ni-BaTiO3 Interfacial Reactions,” Acta Mater., 54 [13] 3513-23 (2006).
[15] K. B. Shim, N. T. Cho, and S. W. Lee, “Silver Diffusion and Microstructure in LTCC Multilayer Couplers for High Frequency Applications,” J. Mater. Sci., 35 [4] 813-20 (2000).
[16] N. J. Donnelly and C. A. Randall, “Refined Model of Electromigration of Ag/Pd Electrodes in Multilayer PZT Ceramics Under Extreme Humidity,” J. Am. Ceram. Soc., 92 [2] 405-10 (2009).
[17] R. Z. Zuo, L. T. Li, Z. L. Gui, C. X. Ji, and X. B. Hu, “Vapor Diffusion of Silver in Cofired Silver/Palladium-Ferroelectric Ceramic Multilayer,” Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 83 [1-3] 152-57 (2001).
[18] J. E. Sergent and C. A. Harper, Hybrid Microelectronics Handbook. 2nd ed.; pp. 3-1-38, McGraw-Hill, Inc., New York, 1995.
[19] D. W. Kim, D. G. Lee, and K. S. Hong, “Low-Temperature Firing and Microwave Dielectric Properties of BaTi4O9 with Zn-B-O Glass System,” Mater. Res. Bull., 36 [3-4] 585-95 (2001).
[20] O. Dernovsek, A. Naeini, G. Preu, W. Wersing, M. Eberstein, and W. A. Schiller, “LTCC Glass-Ceramic Composites for Microwave Application,” J. Eur. Ceram. Soc., 21 [10-11] 1693-7 (2001).
[21] M. T. Sebastian and H. Jantunen, “Low Loss Dielectric Materials for LTCC Applications: a Review,” Int. Mater. Rev., 53 [2] 57-90 (2008).
[22] D. W. Kim, B. Park, J. H. Chung, and K. S. Hong, “Mixture Behavior and Microwave Dielectric Properties in the Low-Fired TiO2-CuO System,” Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 39 [5A] 2696-700 (2000).
[23] D. W. Kim, J. R. Kim, S. H. Yoon, K. S. Hong, and C. K. Kim, “Microwave Dielectric Properties of Low-Fired Ba5Nb4O15,” J. Am. Ceram. Soc., 85 [11] 2759-62 (2002).
[24] Y. C. Lee, C. S. Chiang, and Y. L. Huang, “Microwave Dielectric Properties and Microstructures of Nb2O5-Zn0.95Mg0.05TiO3+0.25TiO2 Ceramics with Bi2O3 Addition,” J. Eur. Ceram. Soc., 30 [4] 963-70 (2010).
[25] T. I. Prokopowicz and A. R. Vaskas, “Research and Development, Intrinsic Reliability, Subminiature Ceramic Capacitors,” Final Rep. ECOM-90705-F, NTIS AD-864068, 1969.
[26] R. Munikoti and P. Dhar, “Highly Accelearted Life Tesing (HALT) for Multilayer Ceramic Capacitor Qualification,” IEEE Trans. Compon. Hybrids, Manuf. Technol., CHMT-11 [4] 342-45 (1988).
[27] S. Sato, Y. Nakano, A Sato and T. Nomura, “Effect of Y-Doping on Resistance Degradation of Multilayer Ceramic Capacitors with Ni Electrodes under the Highly Accelerated Life Test,” Jpn. J. Appl. Phys., 36, 6016-20 (1997).
[28] S. Yang, J. Wu, and A. Christou, “Initial Stage of Silver Electrochemical Migration Degradation,” Microelectronics Reliability, 46 [9-11] 1915-21 (2006).
[29] A. C. Caballero, E. Nieto, P. Duran, C. Moure, M. Kosec, Z. Samardzija, and G. Drazic, “Ceramic-Electrode Interaction in PZT and PNN-PZT Multilayer Piezoelectric Ceramics with Ag/Pd 70/30 Inner Electrode,” J. Mater. Sci., 32 [12] 3257-62 (1997).
[30] J. C. Lin and J. Y. Chan, “On the Resistance of Silver Migration in Ag-Pd Conductive Thick Films under Humid Environment and Applied DC Field,” Mater. Chem. Phys., 43 [3] 256-65 (1996).
[31] P. Shewmon, Diffusion in Solids; pp. 12-3, McGraw-Hill, New York, 1975.
[32] J. H. Jean, and C. R. Chang, “Interfacial Reaction Kinetics between Silver and Ceramic-filled Glass Substrate,” J. Am. Ceram. Soc., 87 [7] 1287-93 (2004).
[33] R. E. Doty and J.J. Vajo, “A Study of Field-Assisted Silver Migration in a Low Temperature Cofirable Ceramic,” pp. 465-474 in ISHM 1995 Proceedings, International Society for Hybrid Microelectronics, Reston, VA, 1995.
[34] D. Chakravorty, A. N. Tiwari, and P. S. Goel, ‘”Diffusion Studies in Glasses,” Phys. Chem. Glasses, 13 91–3 (1972).
[35] H. M. Garfinkel, ‘‘Microscopic Systems and Models’’; pp. 179–247 in Membranes,Vol. I, Edited by G. Eisenman. Dekker, New York, 1972.
[36] A. R. West, D. C. Sinclair and N. Hirose, “Characterization of Electrical Materials, Especially Ferroelectrics, by Impedance Spectroscopy,” J. Electroceram., 1 [1] 65-71 (1997).
[37] D. C. Sinclair and A. R. West, “Impedance and Modulus Spectroscopy of Semiconducting BaTiO3 Showing Positive Temperature Coefficient of Resistance,” J. Appl. Phys., 66 [8] 3850-3856 (1989).
[38] J. T. S. Irvine, D. C. Sinclair and A. R. West, “Electroceramics:Characterization by Impedance Spectroscopy,” Adv. Mater., 2 [3] 132-8 (1990).
[39] N. Hirose and A. R. West, “Impedance Spectroscopy of Undoped BaTiO3 Ceramics,” J. Am. Ceram. Soc., 79 [6] 1633-41 (1996).