簡易檢索 / 詳目顯示

研究生: 林昀廷
Lin, Yun-Ting
論文名稱: 以鎵自催化方式在矽基板上成長具核殼結構之砷化鎵奈米線
Gallium-Self-Catalyzed Growth of GaAs Core-Shell Nanowires on Si by MBE
指導教授: 黃金花
Huang, Jin-Hua
口試委員: 張翼
李薇妮
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 104
中文關鍵詞: 砷化鎵奈米線鎵自催化分子束磊晶核殼結構
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統以來,以氣體□液體□固體三相共存(VLS)方式成長砷化鎵奈米線的製程主要以金當作催化劑,然而金的存在會產生深層能階缺陷,進而影響奈米線的電性及光性質。本研究成功開發出利用矽原生氧化層之孔洞,以分子束磊晶技術在其內形成鎵液滴作為催化劑,再經由VLS過程在矽基板上異質磊晶成長自催化的砷化鎵奈米線。此成長方法可望提昇砷化鎵奈米線之電性及光性質,同時結合高效能的砷化鎵半導體奈米線和矽電晶體工業技術的兩種優點。
    本研究依序探討鎵沈積條件、原生氧化層、束流、以及成長溫度等參數對自催化砷化鎵奈米線成長的影響,更進一步地,藉由去除奈米線頂部的鎵液滴及隨後溫度和束流之調控,得以成長徑向核殼結構的砷化鎵/砷化鋁鎵奈米線,並探討砷化鋁鎵殼層的沈積速率以利未來太陽能元件製作。最後,以矽和鈹元素來摻雜砷化鎵奈米線,並對不同濃度摻雜的n-型及p-型砷化鎵奈米線進行電性量測。
    本研究藉由掃描式電子顯微鏡來觀察奈米線的表面形貌變化,得知在鎵自催化系統中,鎵沈積的時間及溫度會分別影響奈米線的管徑與密度;另外,在固定砷束流的情況下,奈米線的管徑會隨鎵束流的增加而變粗,而在固定鎵束流的情況下,奈米線的軸向生長速率與砷束流成正比。藉由穿透式電子顯微鏡分析奈米線的微結構,得知奈米線本體在高五/三族束流比的成長條件下為完美的Zinc-Blende結構,然而其頂端及底部容易產生雙晶結構,並且能清楚地看出GaAs/AlGaAs的核□殼界面。此外,拉曼光譜分析亦被運用來探討砷化鎵奈米線的結晶性。


    Traditionally, fabrication of GaAs nanowires (NWs) has mainly relied on the use of gold as catalyst through the vapor-liquid-solid (VLS) mechanism. However, the incorporation of gold may generate deep level traps and degrade the electronic and optical property of the nanowires. In this work, we report on a novel method for the growth of vertical GaAs NWs on Si (111) substrates by molecular beam epitaxy without the use of gold. The synthesis is based on gallium-assisted VLS growth, where gallium is selectively pre-deposited in the pinholes in the native oxide prior to the growth of nanowires. This method is expected to grow GaAs nanowires on Si substrates with enhanced electronic and optical property, and hence offer possible integration of high performance GaAs nanoscale devices with the mature Si-based technology. We have systematically studied the influences of Ga pre-deposition condition, native oxide, beam flux, and growth temperature on the growth of GaAs NWs. Furthermore, by eliminating the Ga droplets at the NWs’ tip first and then well controlling the beam fluxes and temperature, we have achieved the growth of GaAs/AlGaAs core-shell nanowires. Besides, we investigated the growth rate of the AlGaAs shell for the benefit of solar cell fabrication in the future. Finally, we studied the incorporation of the commonly dopants Si and Be, and investigated the I-V properties of NWs doped with various Si and Be concentrations. The morphology of nanowires was investigated using scanning electron microscopy. It was found that the Ga pre-deposition time and temperature would control the diameter and density of the nanowires, respectively. On the other hand, the diameter of NWs would increase with increasing Ga flux under constant As flux, while the axial growth rate of NWs is proportional to the As flux under constant Ga flux. Analysis based on the observation of transmission electron microscopy shows that the NWs grown under high V/III flux ratio exhibit a perfect Zinc-Blende structure in the main body region, while twin structure for the tip and bottom. We also observed a clear interface of the GaAs core and AlGaAs shell. The crystal quality of GaAs NWs was also investigated using Raman spectroscopy.

    目錄 第一章 緒論 1 1-1 前言 1 1-2 研究動機 4 1-3 研究目的與論文架構 5 第二章文獻回顧 6 2-1 奈米材料科技 6 2-1-1 零維奈米結構 9 2-1-2 一維奈米結構 9 2-1-3 二維奈米結構 10 2-2 砷化鎵 11 2-3 成長一維奈米結構之方法 17 2-3-1 非等向性奈米晶體的成長 18 2-3-2 Template輔助成長法 19 2-3-3 VLS(Vapor-Liquid-Solid)機制 21 2-3-4 SLS(Solution-Liguid-Solid & Solid-Liguid-Solid)機制 24 2-3-5 氧化物輔助成長法 25 2-4 以MBE系統成長自催化砷化鎵奈米線 26 2-4-1 選擇性區域磊晶方法(Selected Area Epitaxy Method) 27 2-4-2 氧化層的角色 29 2-4-3 三族元素輔助成長 31 2-5 以MBE系統成長核殼結構砷化鎵奈米線 32 2-6 Ⅴ-Ⅲ奈米線的表面形貌 33 2-7 砷化鎵奈米線的結構 34 2-8 奈米線電性研究 37 第三章 儀器介紹與實驗步驟 39 3-1 分子束磊晶 (Molecular Beam Epitaxy, MBE) 簡介 39 3-1-1 分子束磊晶系統 39 3-1-2 磊晶原理 42 3-2 RCA Clean 45 3-3 實驗步驟 47 3-3-1 實驗流程圖 47 3-3-2 試片的承載 48 3-3-3 試片的清洗與載入 48 3-3-4 成長 49 3-3-5 電性量測製備 52 3-4 材料性質分析儀器 54 3-4-1掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 54 3-4-2能量散佈光譜儀 (energy dispersive spectrometer, EDS) 55 3-4-3穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 56 3-4-4拉曼光譜 (Raman Spectrum)horiba hr 800 57 3-4-5電性量測儀器 58 第四章 結果與討論 59 4-1 自催化砷化鎵奈米線之研究探討 59 4-1-1 鎵沈積溫度對奈米線成長之影響 59 4-1-2 原生氧化層對奈米線成長之影響 63 4-1-3 成長溫度對奈米線之影響 68 4-1-4 鎵沈積時間對奈米線表面形貌之影響 70 4-1-5 Ⅴ-Ⅲ ratio 對奈米線表面形貌之影響 71 4-1-6 砷化鎵奈米線之磊晶方向與表面形貌 74 4-1-7 砷化鎵奈米線的結構分析與成份分析 76 4-1-8 砷化鎵奈米線之鍵結結構 80 4-2核殼結構砷化鎵奈米線之研究探討 82 4-2-1 溫度與束流對shell結構成長的影響 82 4-2-2 奈米線之去除鎵液滴處理 86 4-2-3 Shell結構之一致性與沈積速率 89 4-2-4 Core-Shell奈米線之結構與成份分析 92 4-2-4 Core-Shell奈米線之結構與成份分析 92 4-3 砷化鎵奈米線電性量測 97 第五章 結論 101 第六章 參考文獻 102

    第六章 參考文獻
    1. Iijima, S. et al, Nature, 354,6348,56-58(1991).
    2.Hiruma, K. et al., J. Appl. Phys., 77,2,447(1995).
    3.Duan, X. et al., Nature, 409,66 (2001).
    4.Huang, M.H. et al., Science, 292, 1897 (2001).
    5.Hu, J. et al., Acc. Chem. Res., 32, 435 (1999).
    6.Kayes, B.M., Atwater, H.A. and Lewis, N.A., J. Appl. Phys., 97,11(2005).
    7.李世光等編著,奈米科學與技術導論,經濟部工業局,中華民國91年11月30日
    8.白春禮著,奈米科技現在與未來,凡異出版社,中華民國91年10月版
    9.吳衡周編著,自然科學概論,華立圖書公司,中華民國84年8月
    10.klabunde, K.J., Wiley, John. & Sons, Nanoscale Materials in Chemistry.Inc.(2001).
    11.Landes, C.F. et al., Pure and Applied Chemistry, 74,9,1675-1692(2002).
    12. Mohamed, M.B., Burda, C. and Sayed, M.A. Nano Letters, 1,11,. 589-593(2001).
    13. Alivisatos, A.P., Science, 271, 933-937(1996).
    14. Schubert, E.F., Quantum mechanics and quantum structures (2003).
    15. Cui, Y., Wei, Q., Park, H., and Lieber, C.M., Science, 293, 1289–1292(2001).
    16. 林群傑, 材料會訊, 92年十二月. 第十卷(第四期).
    17. Tseng, T.Y., (Ba,Sr)TiO3 thin films: Preparation, properties and reliability. Ferroelectrics., 232, 881-893(1999).
    18. Liu, C.Y., Lue, H.T. and Tseng, T.Y., Appl Phys Lett., 81,23, 4416-4418(2002).
    19. Victor, R.; Available from: http://people.seas.harvard.edu/~jones/es154/lectures/lecture_2/covalent_bond/diam_struct_1.jpg
    20. Zardo et al., Physical Review B, 80, 24, 245324(2009).
    21. http://www.ncl.ox.ac.uk/icl/heyes/structure_of_solids/Lecture2/Lec2.htm

    22. Jones, R.V.; Available from: http://people.seas.harvard.edu/~jones/ap216/images/bandgap_engineering/bandgap_engineering.html
    23. Available from: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/basic.html.
    24. Xia, Y.N. et al., Adv. Mater., 15, 5, 353-389(2003).
    25. Yang, P., et al, Adv. Mater., 16, 445(2004).
    26. Hiruma, K., Appl. Phys. Lett., 59, 431(1991).
    27. Alivisatos, A.P., Nature., 404, 59(2000).
    28. Wu, J. and Liu., S., J. Phys. Chem. B., 106, 9546(2002).
    29. Wagner, R.S. and Ellis, W.C., Appl Phys Lett., 4, 89(1964)
    30. Peidong Yang, Y.W., and Rong Fan, Inorganic Semiconductor Nanowires. International Journal of Nanoscience, 1, 1, 1-39(2002).
    31. Xia, Y. and Yang, P., Adv. Mater., 12, 245(2002).
    32. Lee, S.T., et al., J. Mater. Res., 14, 4503(1999).
    33. Barns, R. L. and Ellis, W. C., J. Appl. Phys., 36, 2296(1965)
    34. Arthur, J. R. and Pore, L., J. Vac. Sci. Technol., 6, 545(1969)
    35. Motohisa, J., Takeda, J., Inari, M., Noborisaka, J. and Fukui, T.,
    Physica E., 23, 298(2004).
    Motohisa, J., Noborisaka, J., Takeda, J., Inari, M., and Fukui, T., J.Cryst.Gro., 272, 180(2004)
    Noborisaka, J., Motohisa, J., and Fukui, T., Appl. Phys. Lett., 86, 213102(2005).
    36. Silva, S.W., Lubyshev, D.I., Basmaji, P., Pusep, Yu., Pizani, S., Galzerani, C., Katiyar, R.S., and Morell, G., J. Appl. Phys., 82, 6247(1997)
    37. Spirkoska, D., Colombo, C., Heiss, M., Abstreiter, G., and A.F.i., Morral., J. Phys:condens Matter., 20, 454225(2008)
    38. Martin, X., Riedlberger, E., Spirkoska, D., Bichler, M., Abstreiter, G., A.F.i., Morral., J. Crys. Gro., 310,1049-1056(2008)
    39. A.F.i., Morral., Colombo, C., and Abstreiter, G., Appl Phys Lett., 92, 063112(2008)
    40. http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_9/backbone/r9_2_1.html
    41. Czaban, J.A., Thompson, D.A. and LaPierre. R.R., Nano Letters, 9, 1, 148-154(2009).
    42. Colombo, C. et al., Appl Phys Lett., 94,17(2009).
    43. Sawaki, N. et al, Phys. Status Solidi C , 6, 1436–1440 (2009)
    44. RZhang, R.Q., Lifshitz, Y., Ma, D., Zhao, Y.L., Frauenheim, S. T. and Tong, S.Y., J. Chem. Phys., 123, 144703 (2005)
    45. Dubrovskii, V. G., Cirlin, G. E., Soshnikov, I. P., Tonkikh, A.A., Phys. Rev. B., 71, 5325(2005).
    46. Kimberly A. and Philippe C., Semicond. Sci. Technol., 25,024009(2010)
    47. Bauer, J., Gottschalch, V., et. al, J. Crys. Gro., 298,625-630(2007)
    48. Sze, S.M., Physics of Semiconductor Devices., Wiley, New York(1981).
    49. Appenzeller, J., et al, Phys. Rev. Lett., 92, 048301(2004).
    50. Zhang, Z.Y., et al, Appl. Phys. Lett., 88, 073102(2006).
    51. Arthur, J.R., J. Appl. Phys., 39,4032(1968).
    52. Hill, M., Molecular Beam Epitaxy. (1994).
    53. Cho, A.Y., J. Appl. Phys., 42,5, 2074(1971).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE