研究生: |
吳家榮 Jia-Rong Wu |
---|---|
論文名稱: |
近似人類感知空間中的搜尋引擎 Closer: An Authentic Search Engine for Perceptual Similarity Queries |
指導教授: |
許奮輝
Fenn-Huei Simon Sheu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 高維索引結構 、人類感知 、感知搜尋 、近似搜尋 |
外文關鍵詞: | High-dimensional index, human factors, perceptual similarity, nearest neighbor search |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Dynamic Partial Function(DPF)根據人類認知心理學(cognitive psychology),模擬人類比對的程序,貢獻了有效模擬人類感知的距離函數。當我們要比較兩張圖,使用DPF做比對時,由於DPF逼近人類的比對程序,因此相較於傳統的距離函數(如 Lp),它更能接近人類的感知。然而, 由於DPF是non-metric,不符合三角形不等式,而絕大部分的索引結構都要求距離函數必須metric,並且符合三角形不等式,所以這些索引結構無法運用在DPF上; 也因此,群聚技術(clustering technique)似乎是唯一的選擇; DPF能利用群聚技術,在Query-by-Example(QBE)的架構上,快速地搜尋 “可能的” k個相似的物件 (這意味著答案中可能存在一個圖片A,而A與被搜尋圖片Q的距離比另一個未在答案中的圖片B來的遠)。在這篇論文中,我們介紹一個新的技術,Closer,用來索引物件,並支援DPF搜尋 “精確的” k個物相似的圖片。當我們讀進索引結構時,我們利用一個metric的範圍函數(range function),緊密地評估出DPF的上下限,並且刪除掉不可能的答案,只留下少數可能的候選圖片,再進一步做答案驗證。我們展現出Closer能夠 “精確” 、快速地搜尋到k個相似的物件(在答案中不存在上述的圖片A),並且探討它能夠應用在relevance feedback架構上的可能性.
The essential contribution of Dynamic Partial Function (DPF) is to effectively quantify the perceptual similarity between images. This method closely models human cognitive activities when scrutinizing two images. However, due to DPF being non-metric and its violation of triangular inequality, most conventional index schemes that require metric-space properties fail to index images based on DPF. As a result, clustering techniques seem to be the only options for efficient, yet approximate retrievals of k nearest neighbors (kNN) to the query image in the Query-by-Example (QBE) paradigm. In this thesis, we introduce a novel technique, Closer, for the exact indexing of DPF. The idea utilizes a metric range function to tightly bound DPF along the traversal of index tree. Unpromising tree branches with their descendants can be efficiently disregarded from further consideration. Only a few surviving candidates are verified with DPF to finalize the kNN query. We show our scheme is correct, and demonstrate Closer can accurately search for true kNN with short delay, even in relevance feedback applications.
1. Paolo Ciaccia, M.P.a.P.Z. M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. in VLDB. 1997. Athens, Greece: Morgan Kaufmann.
2. Henrich, A. The LSDh-Tree: An Access Structure for Feature Vectors. in ICDE. 1998. Orlando, Florida, USA: IEEE Computer Society.
3. Yong Rui, T.S.H., Sharad Mehrotra. Content-Based Image Retrieval with Relevance Feedback in MARS. in ICIP. 1997. Washington, DC, USA: IEEE Computer Society.
4. Roger Weber, H.-J.S., Stephen Blott. A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Space. in VLDB. 1998. NewYork, USA: VLDB.
5. Frank Ramsak, V.M., Robert Fenk, Martin Zirkel, Klaus Elhardt, Rudolf Bayer. Integrating the UB-Tree into a Database System Kernel. in VLDB. 2000. Cairo, Egypt: Morgan Kaufmann.
6. Stefan Berchtold, C.B., H.V. Jagadish, Hans-Peter Kriegel, Jorg Sander. Independent Quantization: An Index Compression Technique for High-Dimensional Data Space. in ICDE. 2000. San Diego, CA.: IEEE Computer Society.
7. Bin Cui, B.C.O., Jianwen Su, Kian-Lee Tan. Contorting High Dimensional Data for Efficient Main Memory KNN Processing. in SIGMOD. 2003.
8. Guang-Ho Cha, X.Z., Petkovic, P.and Chung, C.W. An efficient indexing method for nearest neighbor searches in high-dirnensional image databases. in Multimedia, IEEE Transactions on. 2002.
9. Chung, G.-H.C.a.C.-W., The GC-Tree: A High-Dimensional Index Structure for Similarity Search in Image Databases. IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 2, 2002. 4(2): p. 235- 247.
10. Ertem Tuncel, H.F., and Kenneth Rose. VQ-index: an index structure for similarity searching in multimedia databases. in ACM SIGMM. 2002. Juan les Pins, France: ACM.
11. King-Shy Goh, B.L., and Edward Chang. DynDex: A Dynamic and Non-metric Space Indexer. in ACM international conference on Multimedia. 2002. Juan-les-Pins, France: ACM.
12. Raymond T. Ng, J.H. Efficient and Effective Clustering Methods for Spatial Data Mining. in VLDB. 1994. Santiago de Chile, Chile: Morgan Kaufmann.
13. Raymond T. Ng, J.H., CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE TKDE, 2002. 14(5): p. 1003-1016.
14. Norio Katayama, S.i.S. The SR-tree: An Index Structure for High-Dimensional Nearest Neighbor Queries. in ACM SIGMOD. 1997. Tucson, Arizona: ACM.
15. David A. White, R.J. Similarity Indexing with the SS-tree. in ICDE. 1996: IEEE Computer Society.
16. David B. Lomet, B.S., The hB-Tree: A Multiattribute Indexing Method with Good Guaranteed Performance. ACM Trans. Database System, 1990. 15(4): p. 625-658.
17. King-Ip Lin, H.V.J., Christos Faloutsos, The TV-Tree: An Index Structure for High-Dimensional Data. VLDB, 1994. 3(4): p. 517-542.
18. S. Berchtold, D.A.K., and H.-P. Kriegel. The X-tree: An Index Structure for High-Dimensional Data. in VLDB. 1996. Bombay, India: Morgan Kaufmann.
19. Kai Yu, W.-Y.M., Volker Tresp, Zhao Xu, Xiaofei He, HongJiang Zhang, Hans-Peter Kriegel. Knowing a tree from the forest: art image retrieval using a society of profiles. in ACM SIGMM. 2003. Berkeley, CA, USA: ACM.
20. Keogh, E.J. Exact Indexing of Dynamic Time Warping. 2002. Hong Kong, China.
21. Yunyue Zhu, D.S. Warping Indexes with Envelope Transforms for Query by Humming. in ACM SIGMOD. 2003. San Diego, California, USA: ACM.