簡易檢索 / 詳目顯示

研究生: 謝季庭
Hsieh, Chi -Ting
論文名稱: 載子遷移率對有機太陽能電池的影響
The effect of carrier mobility in organic solar cells
指導教授: 洪勝富
Horng, Sheng-Fu
孟心飛
Meng, Hsin- Fei
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 43
中文關鍵詞: 有機太陽能電池載子遷移率數值的
外文關鍵詞: organic solar cell, carrier mobility, numerical
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對有機太陽能電池的微觀狀態和元件表件做理論之研究,以探討載子遷移率對其影響。在半導體與金屬電極是歐姆接觸下,半導體的載子有兩個來源: (1)由光子吸收轉換而來之光載子(2)由電極擴散進入半導體之暗載子。太陽能電池的效率主要受限於載子與光載子或暗載子之複合。接近短路電流的狀態下,在半導體裡的光載子復合隨著載子遷移率增加而減小。接近開路電流的狀態下,暗載子復合隨著載子遷移率增加而增大。此兩相反的效應會互相牽制,使得在載子遷移率在約10-2 cm2/Vs時,有一使轉換效率最高之最佳化值。也因為光載子和暗載子互相牽制的影響,電子遷移率與電洞遷移率不需要達到平衡才能維持最佳化的效率。當其中一個載子遷移率固定為10-2 cm2/Vs,另一載子遷移率從10-1 cm2/Vs變化到10-3 cm2/Vs,元件仍就可維持幾乎相同好的效率。對太陽能電池而言,當半導體與金屬電極接面為蕭基能障時,並沒有暗載子複合的存在,因此效率隨著載子遷移率增加而增加。


    Abstract Ⅰ Acknowledgements Ⅲ Table of Contents Ⅴ List of Figures Ⅶ Chapter I Introduction 1 1.1 Research Motivation 1 1.2 Approach 2 1.3 Key result of our work 2 1.4 The organization of our thesis 5 Chapter II Physical Mechanisms 6 2.1 Basic work principles of BHJ solar cells 6 2.2 Factors to decide PCE 7 2.3 MIM model 9 2.4 Current processes 10 2.5 Boundary conditions 12 Chapter III Device Model and Equation 13 3.1 Analysis of total current density 133.2 Basic equation 14 3.3 Formulation of time derivation 17 Chapter IV Result and Discussion 20 4.1 In Ohmic contact devices with balance of the electron and hole mobilities 20 4.2 In Ohmic contact devices with unbalance of the electron and hole mobilities 28 4.3 In Schottky contact devices with balance of the electron and hole mobilities 32 Chapter V Conclusions 41 Reference 42

    1Siemens press release, 7 January (2004).
    2G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005)
    3 L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
    4C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, and P. Denk, Appl. Phys. Lett. 80, 1288 (2002).
    5M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hall, and R. A. J. Janssen Angew, Chem. Int. Ed. 42, 3371 (2003)
    6 K. M. Coakley, M. D. McGehee, Chem. Mater. 16, 4533 (2004).
    7 G. Li, V. Shrotriya, Y. Yao, and Y. Yang, J. Appl. Phys. 98, 043704. (2005).
    8 Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, J. Mater. Sci. 40, 6 (2005).
    9 F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater. 13, 85 (2003)
    10 J. Nakamula, K. Murata, and K. Takahashi, Appl. Phys. Lett. 87, 132105 (2005)
    11P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and Denis E. Markov, Adv. Mater. 19, 12 (2007)
    12 H. Hoppe, and N. S. Sariciftci, J. Mater. Res., 19, 7 ( 2004).
    13V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys. 94, 10 (2003)
    14S.M. Sze: Physics of Semiconductor Devices (John Wiley &Sons, New York, 1981).
    15 P. S. Davids, I. H. Campbell, and D. L. Smith, J. Appl. Phys. 82, 12 (1997)
    16 Y. X. Wang, S. R. Tseng, H. F. Meng, K.C. Lee, C. H. Liu and S. F. Horng, Appl. Phys. Lett. 93, 1 (2008)
    17 M. J. Tsai and H. F. Meng, J. Appl. Phys. 97, 114502 (2005).
    18 C. H. Chen and H. F. Meng, Appl. Phys. Lett. 86, 201102 (2005).
    19 P. Langevin, Ann. Chim. Phys. 28, 433 (1903).
    20 U. Albrecht, H. Bassler, Chem. Phys. 199, 207 (1995)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE