簡易檢索 / 詳目顯示

研究生: 張藝耀
Zhang, Yiyao
論文名稱: 太赫茲成像系統中有限二維輸入的三維曲面重建變分框架
Variational Framework for 3D Surface Reconstruction from Limited 2D Inputs in Terahertz Imaging System
指導教授: 陳珂
Chen, Ke
楊尚樺
Yang, Shang-Hua
Movchan, Alexander
Movchan, Alexander
口試委員: Alpers, Andreas
Alpers, Andreas
Vasiev, Bakhtier
Vasiev, Bakhtier
Chang, Jian
Chang, Jian
林嘉文
Lin, Chia-Wen
李夢麟
Li, Meng-Lin
孫啟光
Sun, Chi-Kuang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 246
中文關鍵詞: 三維曲面重建變分模型邊緣能量威爾莫爾能量歐拉-彈性能量相場近似伽馬收斂投影梯度下降法交替方向乘子法數值演算法高斯曲率平均曲率離散幾何多尺度結構相似度指數太赫茲技術次太赫茲成像系統光學相干理論
外文關鍵詞: 3D Surface Reconstruction, Variational Model, Perimeter Energy, Willmore Energy, Euler-Elastica Energy, Phase-field Approximation, Gamma-convergence, Projected Gradient Descent Method, Alternating Direction Method of Multipliers, Numerical Algorithm, Gaussian Curvature, Mean Curvature, Discrete Geometry, Multi-Scale Structural Similarity Index Measure, Terahertz Technology, Sub-Terahertz Imaging System, Optical Coherence Theory
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在數位影像與多維數據迅速擴張的時代中,先進影像處理技術的需求日益增加。本論文針對三維(3D)曲面重建相關挑戰進行探討,專注於數據獲取、處理及提升影像品質。傳統方法主要為二維(2D)場景所設計,在應用於超解析(SR)3D重建時往往無法滿足需求。本研究著重於常見的問題,例如低解析度獲取及數據缺失,這些因素對後續3D重建的造成影響。同時,系統地研究X光、太赫茲(THz)及磁振造影(MRI)等成像模式所固有的限制,從輻射風險到慢速數據獲取及區域解析度限制。

    本論文的核心貢獻在於推進數學框架以重建3D曲面輪廓。首創性的工作是開發一種新型以歐拉-彈性為主的公式,這在多個成像模式中首次被引入。此創新補充了使用變分框架的隱式表示方法探索。這些新方法由針對變分公式量身定製的數值演算法所支撐,特別是投影梯度下降法(PGDM)和交替方向乘子法(ADMM)。為了定量評估這些創新模型,提出並應用了一套全面的指標,包括高斯和平均曲率的標準差以及多尺度結構相似度指數(MS-SSIM)。通過在X光、磁振造影和太赫茲成像應用中的嚴格驗證,這些方法的有效性和多樣性得到展示,為醫療影像和電腦視覺領域帶來了有希望的進展。這包括提升影像解析度、縮短獲取時間,以及改善醫療診斷和治療計劃的清晰度和可用性。

    作為計算創新的補充,本論文還展示了硬體能力的重大進展。本論文最終介紹了以擴散器為輔助的次太赫茲成像系統(DaISy),一種新型將太赫茲攝像感測器陣列與高功率次太赫茲源的組合,從而顯著提高了影像品質。為了對抗相干成像中普遍存在的斑塊瑕疵,提供並應用了一套適應性光學相干理論。這一理論進化不僅是提供了硬體突破的補充,而且是推動相干成像技術在一系列科學和工業領域部署的關鍵驅動力,提供了可能影響未來研究和應用的重大貢獻。


    In an era where digital imagery and multidimensional data are rapidly expanding, the demand for advanced image processing techniques becomes more pressing. This thesis specifically addresses the challenges associated with three-dimensional (3D) surface reconstruction, focusing on data acquisition, processing, and enhancement of image quality. Traditional methods, primarily designed for two-dimensional (2D) scenarios, often fall short when applied to super-resolution (SR) 3D reconstructions. This work critically examines common obstacles, such as low-resolution capture and missing data, which significantly affect subsequent 3D reconstructions. The limitations intrinsic to X-ray, TeraHertz (THz), and Magnetic Resonance Imaging (MRI) modalities, from radiation risks to slow acquisition speeds and regional resolution constraints, are methodically examined.

    The core contribution of this thesis lies in the advancement of mathematical frameworks for 3D surface profile reconstruction. A pioneering effort is the development of a novel Euler-Elastica-based formulation, introduced here for the first time across multiple imaging modalities. Complementing this innovation is an exploration of the implicit representation approach using variational frameworks. These novel methodologies are underpinned by the development of robust numerical algorithms tailored to variational formulations, notably the Projected Gradient Descent Method (PGDM) and the Alternating Direction Method of Multipliers (ADMM). To quantitatively evaluate these innovations, a comprehensive suite of metrics, including the standard deviation of Gaussian and mean curvatures, as well as the Multi-Scale Structural Similarity Index Measure (MS-SSIM), is proposed and employed. Through rigorous validation in X-ray, MRI, and THz imaging applications, the effectiveness and versatility of these approaches are demonstrated, heralding promising advancements in medical imaging and computer vision. These include enhanced image resolution, reduced acquisition times, and improved clarity and usability for medical diagnostics and treatment planning.

    Complementing computational innovations, substantial strides in hardware capabilities are presented. This thesis culminates in the exposition of the Diffuser-aided sub-THz Imaging System (DaISy), a novel assembly that amalgamates a THz camera sensor array with a high-power sub-THz source to markedly elevate image quality. To counter the prevalent speckle artefacts in coherent imaging, an adapted optical coherence theory is formulated and applied. This theoretical evolution is not just an adjunct to the hardware breakthroughs but a pivotal driver for the deployment of coherent imaging techniques across a spectrum of scientific and industrial arenas, offering substantial contributions that may influence future research and applications.

    Contents Contents I Abstract V Acknowledgements IX Publications and Presentations XV List of Figures XVII List of Tables XXIX 1 Introduction 1 1.1 Background and Objectives . . . . . . . . . . . . . . . . . . . . 1 1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Explicit Parametric Approaches . . . . . . . . . . . . . 4 1.2.2 Implicit Approaches . . . . . . . . . . . . . . . . . . . . 5 1.3 Outline of Thesis Structure . . . . . . . . . . . . . . . . . . . . . 15 2 Mathematical Preliminaries 19 2.1 Notations and Terminologies . . . . . . . . . . . . . . . . . . . 20 2.1.1 Numbers, Vectors, and Sets . . . . . . . . . . . . . . . . 20 2.1.2 Functions and Operators . . . . . . . . . . . . . . . . . . 20 2.2 Brief Overview of Partial Differential Equations . . . . . . . . 22 2.3 Mathematical Description of Images . . . . . . . . . . . . . . . 24 2.4 Inverse Problems of Images and Regularisation . . . . . . . . . 26 2.4.1 Well- and Ill-posed Problems . . . . . . . . . . . . . . . 27 2.4.2 Regularisation . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5 Functional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.1 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.2 Topologies on Banach Spaces . . . . . . . . . . . . . . . 36 2.5.3 Convexity and Lower Semicontinuity . . . . . . . . . . 38 2.6 Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . . 42 2.6.1 Variation of Functionals . . . . . . . . . . . . . . . . . . 43 2.6.2 First Variation by G.teaux Derivative . . . . . . . . . . 44 2.6.3 Euler-Lagrange Equation . . . . . . . . . . . . . . . . . 44 2.6.4 Γ-Convergence . . . . . . . . . . . . . . . . . . . . . . . 52 2.7 Brief Overview of Numerical Approaches . . . . . . . . . . . . 53 2.7.1 Finite Difference Method . . . . . . . . . . . . . . . . . 54 2.7.2 Fourier Spectral Method . . . . . . . . . . . . . . . . . . 59 2.7.3 Fast Marching Method . . . . . . . . . . . . . . . . . . . 62 2.7.4 Level Set Method . . . . . . . . . . . . . . . . . . . . . . 66 2.7.5 Direct Gaussian Elimination Method . . . . . . . . . . . 68 2.7.6 Iterative Gauss-Seidel Method . . . . . . . . . . . . . . 69 2.7.7 Iterative Gradient Descent Method . . . . . . . . . . . . 70 3 Terahertz Preliminary 75 3.1 Introduction to Terahertz Technology . . . . . . . . . . . . . . 76 3.2 Pulsed Terahertz Generation and Detection . . . . . . . . . . . 78 3.2.1 Mechanism of PhotoConductive Antennas . . . . . . . 80 3.3 Terahertz Time-Domain Spectroscopy . . . . . . . . . . . . . . 85 3.3.1 ASynchronous OPtical Sampling (ASOPS) . . . . . . . 85 3.3.2 Foundation of TemporalWaveform Processing . . . . . 87 4 Modified Least Squares Fitting Method for Reconstruction 91 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2 Multidimensional Least Squares Fitting Method . . . . . . . . 92 4.2.1 Scenario of 2D Linear Fitting . . . . . . . . . . . . . . . 93 4.2.2 Scenario of 3D Surface Fitting . . . . . . . . . . . . . . . 95 4.3 Implementations of Modified Least Squares Fitting Method . 98 4.3.1 Modified Least Squares Fitting Method . . . . . . . . . 98 4.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . 103 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5 Variational Models for 3D Reconstruction from Few Slices 113 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . 118 5.2.1 Fidelity by Interior and Exterior Restrictions . . . . . . 118 5.2.2 Relaxation by Phase-field Approximation . . . . . . . . 122 5.3 The New Euler-Elastica-based Model and its Numerical Algorithms. . . 128 5.3.1 Derivation for the Euler-Elastica-based Formulation . . 128 5.3.2 Numerical Algorithm I: PGDM . . . . . . . . . . . . . . 130 5.3.3 Numerical Algorithm II: ADMM . . . . . . . . . . . . . 131 5.4 Experimental Results and Quantitative Comparisons with Analysis. . . 136 5.4.1 Example 1 (Sphere tested by all compared models) . . 137 5.4.2 Example 2 (Branching Cylinders tested by three formulations). . . 141 5.4.3 Quantitative Comparisons . . . . . . . . . . . . . . . . . 143 5.4.4 Experimental Convergence and Computational Complexity of PGDM for Example 1 . . . 147 5.4.5 Experimental Analysis of ADMM for Example 1 . . . . 149 5.4.6 Example 3 (Stent segmented from real CT images) . . . 150 5.4.7 Example 4 (Tumour segmented from real MRI images) 153 5.4.8 Example 5 (Deer from real THz imaging) . . . . . . . . 154 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6 Variational Frameworks for BLIss in THz 3D Reconstruction 157 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.2.1 Experimental Setup for Data Acquisition . . . . . . . . 162 6.2.2 Conventional THz CT Imaging . . . . . . . . . . . . . . 162 6.2.3 Variational Frameworks and Numerical Algorithm with ADMM . . . 165 6.2.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.3 Experimental Results with Discussion and Application . . . . 172 6.3.1 Visualisation for Super-Resolution Evolution . . . . . . 180 6.3.2 Potential Improvements in Experimental Setting and Data Acquisition . . . 181 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7 DaISy: Diffuser-aided Sub-THz Imaging System 185 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 7.2 Methods for Restraining Speckle Artefacts in Coherent Imaging 188 7.2.1 Coherent beam manipulation by focusing lens and designed THz diffuser . . . 189 7.2.2 Coherence theory for speckle evaluation . . . . . . . . 193 7.3 Image Quality Metrics . . . . . . . . . . . . . . . . . . . . . . . 199 7.3.1 Full-Reference Quality Metrics . . . . . . . . . . . . . . 199 7.3.2 No-Reference Quality Metrics . . . . . . . . . . . . . . . 201 7.4 DaISy with Results and Discussions . . . . . . . . . . . . . . . 202 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 8 Conclusion and Future Direction 211 8.1 Summary of Contributions and Key Findings . . . . . . . . . . 211 8.2 Future Research Directions and Improvements . . . . . . . . . 213 Bibliography 215 Alphabetical Index 243

    Bibliography
    [1] Yiyao Zhang, Ke Chen, and Shang-Hua Yang. Fast Terahertz 3D Super-Resolution Surface Reconstruction by Variational Model from Limited Low-Resolution Sampling. In 2022 47th International Conference on In-frared, Millimeter and Terahertz Waves (IRMMW-THz 2022), 2022. 16, 154, 157, 158, 162, 164, 165, 166
    [2] Yiyao Zhang, Ke Chen, and Shang-Hua Yang. Euler-Elastica Varia-tional Model for Pulsed Terahertz 3D Imaging. In 2023 Conference on Lasers and Electro-Optics (CLEO 2023). Optica Publishing Group, 2023. 16, 157, 158, 165, 166, 170, 186
    [3] Yiyao Zhang, Ke Chen, and Shang-Hua Yang. Super-Resolution Sur-face Reconstruction from Few Low-Resolution Slices. Inverse Problems and Imaging, 18(2):447–479, 2024. 16, 113, 165, 166, 170
    [4] Yiyao Zhang, Ke Chen, and Shang-Hua Yang. Breaking the Limita-tions with Sparse Inputs by Variational Frameworks (BLIss) in Tera-hertz Super-Resolution 3D Reconstruction. Optics Express, 32(9):15078–15092, Apr 2024. 16, 157
    [5] Shao-Hsuan Wu, Yiyao Zhang, Ke Chen, and Shang-Hua Yang. DaISy: Diffuser-aided Sub-THz Imaging System. Opt. Express, 32(7):11092–11106, Mar 2024. 17, 185
    [6] Shao-Hsuan Wu, Yiyao Zhang, Shaghayegh Afshari, Chia-Ming Mai, and Shang-Hua Yang. Cost-effective Diffuser for Speckle Mitigation in Sub-THz Real-time Imaging. In 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pages 1–2, 2024. 17, 185
    [7] Seyed Mostafa Latifi, Shao-Hsuan Wu, Yiyao Zhang, and Shang-Hua Yang. 3D Printed Hybrid Diffuser-Lens towards Compact Speckle-free Sub-THz Imaging. In 2024 49th International Conference on Infrared, Mil-limeter, and Terahertz Waves (IRMMW-THz), pages 1–2, 2024.
    [8] E. Keppel. Approximating Complex Surfaces by Triangulation of Con-tour Lines. IBM Journal of Research and Development, 19(1):2–11, 1975. XVII, 4, 5
    [9] Henry Fuchs, Zvi M Kedem, and Samuel P Uselton. Optimal sur-face reconstruction from planar contours. Communications of the ACM, 20(10):693–702, 1977. XVII, 4, 6
    [10] Jean-Daniel Boissonnat. Shape reconstruction from planar cross sec-tions. Computer vision, graphics, and image processing, 44(1):1–29, 1988. XVII, 4, 7
    [11] Alexandre B Ekoule, FC Peyrin, and Christophe L Odet. A triangula-tion algorithm from arbitrary shaped multiple planar contours. ACM Transactions on Graphics (TOG), 10(2):182–199, 1991. XVII, 4, 7
    [12] David Meyers, Shelley Skinner, and Kenneth Sloan. Surfaces from con-tours. ACM Transactions On Graphics (TOG), 11(3):228–258, 1992. XVII, 4, 8
    [13] Tao Ju, Joe Warren, James Carson, Gregor Eichele, Christina Thaller, Wah Chiu, Musodiq Bello, and Ioannis Kakadiaris. Building 3D sur-face networks from 2D curve networks with application to anatomical modeling. The Visual Computer, 21:764–773, 2005. XVII, 4, 9
    [14] Lu Liu, Chandrajit Bajaj, Joseph O Deasy, Daniel A Low, and Tao Ju. Surface reconstruction from non-parallel curve networks. In Computer Graphics Forum, volume 27, pages 155–163. Wiley Online Library, 2008. XVII, 5, 10
    [15] Mark W Jones and Min Chen. A new approach to the construction of surfaces from contour data. In Computer Graphics Forum, volume 13, pages 75–84. Wiley Online Library, 1994. XVII, 5, 11
    [16] Samir Akkouche and Eric Galin. Implicit surface reconstruction from contours. The Visual Computer, 20:392–401, 2004. XVII, 5, 11
    [17] Sang-Un Kim and Chang-Ock Lee. Accurate surface reconstruction in 3D using two-dimensional parallel cross sections. Journal of Mathemat-ical Imaging and Vision, 53:182–195, 2015. XVIII, 12, 13, 14
    [18] B.S. Morse, T.S. Yoo, P. Rheingans, D.T. Chen, and K.R. Subramanian. Interpolating implicit surfaces from scattered surface data using com-pactly supported radial basis functions. In Proceedings International Conference on Shape Modeling and Applications, pages 89–98, 2001. XVIII, 8, 12
    [19] Hong-Kai Zhao, Stanley Osher, and Ronald Fedkiw. Fast surface re-construction using the level set method. In Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision, pages 194–201. IEEE, 2001. XVIII, 8, 13, 114
    [20] Greg Turk and James F O’brien. Shape transformation using varia-tional implicit functions. In ACM SIGGRAPH 2005 Courses, pages 13–es. ACM SIGGRAPH 2005 Courses, 2005. XVIII, 8, 14
    [21] Yibao Li, Jaemin Shin, Yongho Choi, and Junseok Kim. Three-dimensional volume reconstruction from slice data using phase-field models. Computer Vision and Image Understanding, 137:115–124, 2015. XVIII, 13, 14
    [22] Jerome V Moloney, Joe M Yarborough, Mahmoud Fallahi, Maik Scheller, Stephan W Koch, and Martin Koch. Compact, high-power, room-temperature, narrow-line terahertz source. SPIE Newsroom, 2011. XIX, 78, 79, 80, 81
    [23] Kaveh Delfanazari, Richard A. Klemm, Hannah J. Joyce, David A. Ritchie, and Kazuo Kadowaki. Integrated, Portable, Tunable, and Co-herent Terahertz Sources and Sensitive Detectors Based on Layered Su-perconductors. Proceedings of the IEEE, 108(5):721–734, 2020. XIX, 2, 78, 79, 80, 81
    [24] Weng-Tai Su, Yi-Chun Hung, Po-Jen Yu, Shang-Hua Yang, and Chia-Wen Lin. Making the Invisible Visible: Toward High-Quality Terahertz Tomographic Imaging via Physics-Guided Restoration. International Journal of Computer Vision, pages 1–20, 2023. XXIX, 3, 158, 160
    [25] Andreas Alpers, Richard J Gardner, Stefan König, Robert S Penning-ton, Chris B Boothroyd, Lothar Houben, Rafal E Dunin-Borkowski, and Kees Joost Batenburg. Geometric reconstruction methods for electron tomography. Ultramicroscopy, 128:42–54, 2013. 1
    [26] Paul A Midgley and Matthew Weyland. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomog-raphy. Ultramicroscopy, 96(3-4):413–431, 2003. 1
    [27] Anastassia Angelopoulou, Alexandra Psarrou, Jose Garcia-Rodriguez, Sergio Orts-Escolano, Jorge Azorin-Lopez, and Kenneth Revett. 3D re-construction of medical images from slices automatically landmarked with growing neural models. Neurocomputing, 150:16–25, 2015. 2
    [28] Hansung Kim, Jean-Yves Guillemaut, Takeshi Takai, Muhammad Sarim, and Adrian Hilton. Outdoor Dynamic 3-D Scene Reconstruc-tion. IEEE Transactions on Circuits and Systems for Video Technology, 22(11):1611–1622, 2012. 2
    [29] Nurnajmin Qasrina Ann, M.S. Hendriyawan Achmad, Luhur Bayuaji,
    M. Razali Daud, and Dwi Pebrianti. Study on 3D scene reconstruc-tion in robot navigation using stereo vision. In 2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), pages 72–77, 2016. 2
    [30] Fabio Bruno, Stefano Bruno, Giovanna De Sensi, Maria-Laura Luchi, Stefania Mancuso, and Maurizio Muzzupappa. From 3D reconstruc-tion to virtual reality: A complete methodology for digital archaeolog-ical exhibition. Journal of Cultural Heritage, 11(1):42–49, 2010. 2
    [31] John F Federici, Brian Schulkin, Feng Huang, Dale Gary, Robert Barat, Filipe Oliveira, and David Zimdars. THz imaging and sensing for se-curity applications—explosives, weapons and drugs. Semiconductor sci-ence and technology, 20(7):S266, 2005. 2, 186
    [32] Gillian Claire Walker, Elizabeth Berry, Nick N Zinov’ev, Anthony J Fitzgerald, Robert E Miles, J Martyn Chamberlain, and Michael A Smith. Terahertz imaging and international safety guidelines. Medi-cal Imaging 2002: Physics of Medical Imaging, 4682:683–690, 2002. 2, 186
    [33] Swen Koenig, Daniel Lopez-Diaz, Jochen Antes, Florian Boes, Ralf Henneberger, Arnulf Leuther, Axel Tessmann, René Schmogrow, David Hillerkuss, Robert Palmer, et al. Wireless sub-THz communica-tion system with high data rate. Nature photonics, 7(12):977–981, 2013. 2, 186
    [34] P Mohamed Shakeel, S Baskar, Hassan Fouad, Gunasekaran Manog-aran, Vijayalakshmi Saravanan, and Qin Xin. Creating collision-free communication in IoT with 6G using multiple machine access learning collision avoidance protocol. Mobile Networks and Applications, 26:969–980, 2021. 2, 186
    [35] Kodo Kawase, Yuichi Ogawa, Yuuki Watanabe, and Hiroyuki Inoue. Non-destructive terahertz imaging of illicit drugs using spectral fin-gerprints. Optics express, 11(20):2549–2554, 2003. 2, 186
    [36] Christian Jansen, Steffen Wietzke, Ole Peters, Maik Scheller, Nico Vieweg, Mohammed Salhi, Norman Krumbholz, Christian Jördens, Thomas Hochrein, and Martin Koch. Terahertz imaging: applications and perspectives. Appl. Opt., 49(19):E48–E57, Jul 2010. 2, 158
    [37] Xurong Li, Jingxi Li, Yuhang Li, Aydogan Ozcan, and Mona Jarrahi. High-throughput terahertz imaging: progress and challenges. Light: Science & Applications, 12(1):233, 2023. 2, 159, 187
    [38] Jungjun Kim, Hwasup Lim, Sang Chul Ahn, and Seungkyu Lee. RGBD Camera Based Material Recognition via Surface Roughness Estima-tion. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1963–1971, 2018. 3
    [39] EJ Nunes-Pereira, H Peixoto, J Teixeira, and J Santos. Polarization-coded material classification in automotive LIDAR aiming at safer au-tonomous driving implementations. Applied Optics, 59(8):2530–2540, 2020. 3
    [40] LP Clarke, RP Velthuizen, MA Camacho, JJ Heine, M Vaidyanathan, LO Hall, RW Thatcher, and ML Silbiger. MRI segmentation: methods and applications. Magnetic resonance imaging, 13(3):343–368, 1995. 3
    [41] M. Amrani, B. Crespin, and B. Shariat. Skeletal implicit surface re-construction from sections for flexible body simulation. In Proceedings Fifth International Conference on Information Visualisation, pages 723–728, 2001. 5
    [42] Ming Zou, Michelle Holloway, Nathan Carr, and Tao Ju. Topology-constrained surface reconstruction from cross-sections. ACM Transac-tions on Graphics (TOG), 34(4):1–10, 2015. 8
    [43] J. W. Neuberger. Sobolev gradients and differential equations. Lecture notes in mathematics: 1670. Springer, 2009. 21
    [44] Lennart Råde and Bertil Westergren. Mathematics handbook for science and engineering, volume 5. Springer, 1999. 21
    [45] F. Rindler. Calculus of variations. Universitext. Springer, 2018. 21
    [46] Lars Hörmander. The analysis of linear partial differential operators III: Pseudo-differential operators. Springer Science & Business Media, 2007. 21, 22
    [47] Gilles Aubert and Pierre Kornprobst. Mathematical problems in image processing: partial differential equations and the calculus of variations. Ap-plied mathematical sciences: 147. New York: Springer, 2006. 22, 26, 29, 41, 42, 52, 114
    [48] Jichun Li and Yi-Tung Chen. Computational partial differential equations using MATLAB. Chapman & Hall/CRC applied mathematics and non-linear science series. Boca Raton; London: CRC Press, 2019. 22, 54, 58
    [49] Zhilin Li, Zhonghua Qiao, and Tao Tang. Numerical Solution of Differen-tial Equations: Introduction to Finite Difference and Finite Element Methods. Cambridge: Cambridge University Press, 2017. 22, 54
    [50] César Pérez López. MATLAB Differential Equations. Online access with purchase: Springer. Berkeley, CA: Apress, 2014. 22
    [51] Anna Doubova Krasotchenko, Manuel González Burgos, Fran-cisco Manuel Guillén González, and Mercedes Marín Beltrán. Recent Advances in PDEs: Analysis, Numerics and Control. In Honor of Prof. Fernández-Cara’s 60th Birthday. Springer, 2018. 22
    [52] Ke Chen, Carola-Bibiane Schönlieb, Xue-Cheng Tai, and Laurent Younes. Handbook of mathematical models and algorithms in computer vi-sion and imaging: mathematical imaging and vision. Springer Nature, 2023. 26, 42, 52
    [53] Zhenwei Zhang, Ke Chen, Ke Tang, and Yuping Duan. Fast Multi-Grid Methods for Minimizing Curvature Energies. IEEE Transactions on Image Processing, 32:1716–1731, 2023. 26
    [54] Carlos Brito-Loeza Faisal Fairag, Ke Chen and Shahbaz Ahmad. A two-level method for image denoising and image deblurring models using mean curvature regularization. International Journal of Computer Mathematics, 99(4):693–713, 2022. 26
    [55] Carlos Brito-Loeza, Ke Chen, and Victor Uc-Cetina. Image denoising using the Gaussian curvature of the image surface. Numerical Methods for Partial Differential Equations, 32(3):1066–1089, 2016. 26
    [56] Faisal Fairag, Ke Chen, and Shahbaz Ahmad. An effective algorithm for mean curvature-based image deblurring problem. Computational and Applied Mathematics, 41(4):176, 2022. 26
    [57] Ke Chen, E Loli Piccolomini, and Fabiana Zama. Iterative constrained minimization for vectorial TV image deblurring. Journal of Mathematical Imaging and Vision, 54:240–255, 2016. 26
    [58] Chongfei Huang, Ke Chen, Meixiang Huang, Dexing Kong, and Jing Yuan. Topology-preserving image registration with novel multi-dimensional Beltrami regularization. Applied Mathematical Modelling, 125:539–556, 2024. 26
    [59] Daoping Zhang and Ke Chen. 3D orientation-preserving variational models for accurate image registration. SIAM Journal on Imaging Sci-ences, 13(3):1653–1691, 2020. 26
    [60] Anis Theljani and Ke Chen. A Nash game based variational model for joint image intensity correction and registration to deal with varying illumination. Inverse Problems, 36(3):034002, 2020. 26
    [61] Zhi-Feng Pang, Zhenyan Guan, Yue Li, Ke Chen, and Hong Ge. Image segmentation based on the hybrid bias field correction. Applied Mathe-matics and Computation, 452:128050, 2023. 26
    [62] Hongrun Zhang, Liam Burrows, Yanda Meng, Declan Sculthorpe, Ab-hik Mukherjee, Sarah E Coupland, Ke Chen, and Yalin Zheng. Weakly supervised segmentation with point annotations for histopathology images via contrast-based variational model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15630–15640, 2023. 26
    [63] Liam Burrows, Ke Chen, Weihong Guo, Martin Hossack, Richard G McWilliams, and Francesco Torella. Evaluation of a hybrid pipeline for automated segmentation of solid lesions based on mathematical algo-rithms and deep learning. Scientific Reports, 12(1):14216, 2022. 26
    [64] Carola-Bibiane Schönlieb. Partial differential equation methods for image inpainting, volume 29. Cambridge University Press, 2015. 26, 114, 136, 137
    [65] Carlos Brito-Loeza and Ke Chen. Multigrid method for a modified curvature driven diffusion model for image inpainting. Journal of Com-putational Mathematics, pages 856–875, 2008. 26
    [66] Tikhonov Andrei Nikolaevich, AV Goncharsky, VV Stepanov, and Ana-toly G Yagola. Numerical methods for the solution of ill-posed prob-lems, 1977. 28
    [67] Gene H Golub, Per Christian Hansen, and Dianne P O’Leary. Tikhonov regularization and total least squares. SIAM journal on matrix analysis and applications, 21(1):185–194, 1999. 28
    [68] A Hitchhiker’s Guide. Infinite dimensional analysis. Springer, 2006. 29
    [69] Gert K Pedersen. Analysis now, volume 118. Springer Science & Busi-ness Media, 2012. 29
    [70] Joseph Muscat. Functional analysis: an introduction to metric spaces, Hilbert spaces, and Banach algebras. Springer, 2014. 29
    [71] Ammar Khanfer. Applied Functional Analysis. Springer Singapore, 2024. 29, 42, 52
    [72] Pablo Pedregal. Functional analysis, Sobolev spaces and calculus of varia-tions. Springer Cham, 2024. 29, 42, 52
    [73] Dazhong Lao and Shanshan Zhao. Fundamental theories and their appli-cations of the calculus of variations. Springer, 2021. 42, 52
    [74] Anders Vretblad and A Vretblad. Fourier analysis and its applications, volume 223. Springer, 2003. 59
    [75] Lloyd N Trefethen. Spectral methods in MATLAB. SIAM, 2000. 59
    [76] David Gottlieb and Steven A Orszag. Numerical analysis of spectral meth-ods: theory and applications. SIAM, 1977. 59
    [77] James A Sethian. A fast marching level set method for monotoni-cally advancing fronts. proceedings of the National Academy of Sciences, 93(4):1591–1595, 1996. 62, 66, 114
    [78] J. A. Sethian. Fast Marching Methods. SIAM Review, 41(2):199–235, 1999. 62
    [79] Kaiwen Chang and Bruno Figliuzzi. Fast marching based superpixels generation. In Mathematical Morphology and Its Applications to Signal and Image Processing: 14th International Symposium, ISMM 2019, Saarbrücken, Germany, July 8-10, 2019, Proceedings 14, pages 350–361. Springer, 2019. 62
    [80] Stanley Osher and Ronald P Fedkiw. Level Set Methods: An Overview and Some Recent Results. Journal of Computational physics, 169(2):463–502, 2001. 62
    [81] Stanley Osher, Ronald Fedkiw, and K Piechor. Level Set Methods and Dynamic Implicit Surfaces. Appl. Mech. Rev., 57(3):B15–B15, 2004. 62
    [82] Stanley Osher and James A Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 79(1):12–49, 1988. 62, 66
    [83] James R Bunch and John E Hopcroft. Triangular factorization and inversion by fast matrix multiplication. Mathematics of Computation, 28(125):231–236, 1974. 68
    [84] Tom Lyche. Numerical linear algebra and matrix factorizations, volume 22. Springer Nature, 2020. 68
    [85] Alexander J Zaslavski. Numerical Optimization with Computational Er-rors, volume 108. Springer, 2016. 68, 69, 70
    [86] Timothy G Feeman. Applied Linear Algebra and Matrix Methods. Springer Nature, 2023. 69
    [87] Eklas Hossain. MATLAB and Simulink Crash Course for Engineers. Springer Nature, 2022. 69
    [88] Jonathan Barzilai and Jonathan M Borwein. Two-point step size gra-dient methods. IMA journal of numerical analysis, 8(1):141–148, 1988. 70
    [89] Ning Qian. On the momentum term in gradient descent learning algo-rithms. Neural networks, 12(1):145–151, 1999. 70
    [90] Måns Larsson, Anurag Arnab, Fredrik Kahl, Shuai Zheng, and Philip Torr. A Projected Gradient Descent Method for CRF Inference Al-lowing End-to-End Training of Arbitrary Pairwise Potentials. In En-ergy Minimization Methods in Computer Vision and Pattern Recognition: 11th International Conference, EMMCVPR 2017, Venice, Italy, October 30-November 1, 2017, Revised Selected Papers 11, pages 564–579. Springer, 2018. 70
    [91] Arijit Saha, Arindam Biswas, Kankat Ghosh, and Nilanjan Mukhopad-hyay. Optical to Terahertz Engineering. Springer, 2023. 75, 76, 77
    [92] Xi-Cheng Zhang, Jingzhou Xu, et al. Introduction to THz wave photonics, volume 29. Springer, 2010. 75, 76, 77, 80, 82
    [93] Yun-Shik Lee. Principles of terahertz science and technology, volume 170. Springer Science & Business Media, 2009. 75, 76, 77, 80, 82
    [94] Isha Malhotra and Ghanshyam Singh. Terahertz Antenna Technology for Imaging and Sensing Applications. In Terahertz Antenna Technology for Imaging and Sensing Applications, pages 75–102. Springer, 2021. 75
    [95] Xiaoxia Yin, Brian W-H Ng, and Derek Abbott. Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruc-tion. Springer Science & Business Media, 2012. 75, 77
    [96] Michael Herrmann, Ryoichi Fukasawa, and Osamu Morikawa. Tera-hertz Imaging. Terahertz Optoelectronics, pages 331–382, 2005. 75
    [97] Daniel M. Mittleman. Twenty years of terahertz imaging [Invited]. Opt. Express, 26(8):9417–9431, Apr 2018. 76, 77, 158, 178
    [98] Ken B. Cooper, Robert J. Dengler, Nuria Llombart, Tomas Bryllert, Goutam Chattopadhyay, Erich Schlecht, John Gill, Choonsup Lee, An-ders Skalare, Imran Mehdi, and Peter H. Siegel. Penetrating 3-D Imag-ing at 4- and 25-m Range Using a Submillimeter-Wave Radar. IEEE Transactions on Microwave Theory and Techniques, 56(12):2771–2778, 2008. 77, 157, 178
    [99] Ken B. Cooper, Robert J. Dengler, Nuria Llombart, Bertrand Thomas, Goutam Chattopadhyay, and Peter H. Siegel. THz Imaging Radar for Standoff Personnel Screening. IEEE Transactions on Terahertz Science and Technology, 1(1):169–182, 2011. 77, 157, 178
    [100] Gombo Tzydynzhapov, Pavel Gusikhin, Viacheslav Muravev, Alexey Dremin, Yuri Nefyodov, and Igor Kukushkin. New real-time sub-terahertz security body scanner. Journal of Infrared, Millimeter, and Tera-hertz Waves, 41:631–641, 2020. 77, 186
    [101] Yayun Cheng, Yingxin Wang, Yingying Niu, and Ziran Zhao. Con-cealed object enhancement using multi-polarization information for passive millimeter and terahertz wave security screening. Opt. Express, 28(5):6350–6366, Mar 2020. 77, 157, 178
    [102] Yuma Takida, Kouji Nawata, and Hiroaki Minamide. Security screen-ing system based on terahertz-wave spectroscopic gas detection. Opt. Express, 29(2):2529–2537, Jan 2021. 77, 157, 178
    [103] Shiban Kishen Koul and Priyansha Kaurav. Sub-Terahertz Sensing Tech-nology for Biomedical Applications. Springer Nature, 2022. 77
    [104] Alfred Leitenstorfer, Andrey S Moskalenko, Tobias Kampfrath, Ju-nichiro Kono, Enrique Castro-Camus, Kun Peng, Naser Qureshi, Dmitry Turchinovich, Koichiro Tanaka, Andrea G Markelz, Martina Havenith, Cameron Hough, Hannah J Joyce, Willie J Padilla, Binbin Zhou, Ki-Yong Kim, Xi-Cheng Zhang, Peter Uhd Jepsen, Sukhdeep Dhillon, Miriam Vitiello, Edmund Linfield, A Giles Davies, Matthias C Hoffmann, Roger Lewis, Masayoshi Tonouchi, Pernille Klarskov, Tom S Seifert, Yaroslav A Gerasimenko, Dragan Mihailovic, Rupert Huber, Jessica L Boland, Oleg Mitrofanov, Paul Dean, Brian N Elli-son, Peter G Huggard, Simon P Rea, Christopher Walker, David T Lei-sawitz, Jian Rong Gao, Chong Li, Qin Chen, Gintaras Valušis, Vincent P Wallace, Emma Pickwell-MacPherson, Xiaobang Shang, Jeffrey Hes-ler, Nick Ridler, Cyril C Renaud, Ingmar Kallfass, Tadao Nagatsuma, J Axel Zeitler, Don Arnone, Michael B Johnston, and John Cunning-ham. The 2023 terahertz science and technology roadmap. Journal of Physics D: Applied Physics, 56(22):223001, apr 2023. 77, 158, 178
    [105] Zhi Chen, Chong Han, Yongzhi Wu, Lingxiang Li, Chongwen Huang, Zhaoyang Zhang, Guangjian Wang, and Wen Tong. Terahertz wireless communications for 2030 and beyond: A cutting-edge frontier. IEEE Communications Magazine, 59(11):66–72, 2021. 77
    [106] Xi-Cheng Zhang, Jingzhou Xu, Xi-Cheng Zhang, and Jingzhou Xu. THz Technology in Security Checks. Introduction to THz wave photonics, pages 201–219, 2010. 77
    [107] DH Auston and PR Smith. Generation and detection of millime-ter waves by picosecond photoconductivity. Applied Physics Letters, 43(7):631–633, 1983. 78
    [108] David H Auston, Kin P Cheung, and Peter R Smith. Picosecond pho-toconducting Hertzian dipoles. Applied physics letters, 45(3):284–286, 1984. 78
    [109] D.H. Auston and M.C. Nuss. Electrooptical generation and detection of femtosecond electrical transients. IEEE Journal of Quantum Electronics, 24(2):184–197, 1988. 78
    [110] D Grischkowsky, Søren Keiding, Martin Van Exter, and Ch Fattinger. Far-infrared time-domain spectroscopy with terahertz beams of di-electrics and semiconductors. JOSA B, 7(10):2006–2015, 1990. 78
    [111] Martin Koch, Daniel M Mittleman, Jan Ornik, and Enrique Castro-Camus. Terahertz time-domain spectroscopy. Nature Reviews Methods Primers, 3(1):48, 2023. 78, 158
    [112] Gwyn P Williams. High-power terahertz synchrotron sources. Philo-sophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362(1815):403–414, 2004. 79
    [113] BN Murdin. Far-infrared free-electron lasers and their applications. Contemporary physics, 50(2):391–406, 2009. 79
    [114] Giacomo Scalari, Christoph Walther, Milan Fischer, Romain Terazzi, Harvey Beere, David Ritchie, and Jerome Faist. THz and sub-THz quantum cascade lasers. Laser & Photonics Reviews, 3(1-2):45–66, 2009. 79
    [115] François Simoens. THz Bolometer Detectors. Physics and Applications of Terahertz Radiation, pages 35–75, 2014. 79
    [116] Mario Schiselski, Martin Laabs, Niels Neumann, Sergey Kovalev, Bertram Green, Michael Gensch, and Dirk Plettemeier. A planar Schot-tky diode based integrated THz detector for fast electron pulse diag-nostics. In 2016 IEEE MTT-S International Microwave Symposium (IMS), pages 1–4, 2016. 79
    [117] J.T. Darrow, X.-C. Zhang, D.H. Auston, and J.D. Morse. Saturation properties of large-aperture photoconducting antennas. IEEE Journal of Quantum Electronics, 28(6):1607–1616, 1992. 83
    [118] Jun Wang and Zeyun Yu. A Novel Method for Surface Mesh Smooth-ing: Applications in Biomedical Modeling. In Proceedings of the 18th international meshing roundtable, pages 195–210. Springer, 2009. 91, 95, 116, 143, 170
    [119] Tony F Chan and Jianhong Shen. Image processing and analysis: varia-tional, PDE, wavelet, and stochastic methods. SIAM, 2005. 114
    [120] Frédéric Cazals and Joachim Giesen. Delaunay triangulation based surface reconstruction. In Effective computational geometry for curves and surfaces, pages 231–276. Springer, 2006. 114
    [121] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A new Voronoi-based surface reconstruction algorithm. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pages 415–421, 1998. 114
    [122] Nina Amenta and Marshall Bern. Surface reconstruction by Voronoi filtering. In Proceedings of the fourteenth annual symposium on Computa-tional geometry, pages 39–48, 1998. 114
    [123] Pierre Alliez, David Cohen-Steiner, Yiying Tong, and Mathieu Des-brun. Voronoi-based Variational Reconstruction of Unoriented Point Sets. In Alexander Belyaev and Michael Garland, editors, Geometry Processing. The Eurographics Association, 2007. 114
    [124] Jonathan C Carr, Richard K Beatson, Jon B Cherrie, Tim J Mitchell, W Richard Fright, Bruce C McCallum, and Tim R Evans. Reconstruc-tion and representation of 3D objects with radial basis functions. In Proceedings of the 28th annual conference on Computer graphics and interac-tive techniques, pages 67–76, 2001. 114
    [125] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson Sur-face Reconstruction. In Alla Sheffer and Konrad Polthier, editors, Sym-posium on Geometry Processing. The Eurographics Association, 2006. 114
    [126] Michael Kazhdan and Hugues Hoppe. Screened poisson surface re-construction. ACM Transactions on Graphics (ToG), 32(3):1–13, 2013. 114
    [127] Elie Bretin, François Dayrens, and Simon Masnou. Volume reconstruc-tion from slices. SIAM Journal on Imaging Sciences, 10(4):2326–2358, 2017. 114, 115, 116, 122, 123, 125, 127, 130, 131, 165, 166
    [128] Carlos Brito-Loeza and Ke Chen. Fast iterative algorithms for solving the minimization of curvature-related functionals in surface fairing. In-ternational Journal of Computer Mathematics, 90(1):92–108, 2013. 116
    [129] Luca Mugnai. Gamma-convergence results for phase-field approxima-tions of the 2D-Euler elastica functional. ESAIM: Control, Optimisation and Calculus of Variations, 19(3):740–753, 2013. 116, 125, 127, 128
    [130] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. Dis-crete differential-geometry operators for triangulated 2-manifolds. In Visualization and mathematics III, pages 35–57. Springer, 2003. 116, 143, 170
    [131] H. Anton and C. Rorres. Elementary Linear Algebra with Supplemental Applications. Wiley, 2015. 121
    [132] Luciano Modica. Il limite nella Γ-convergenza di una famiglia di fun-zionali ellittici. (Italian) Boll. Un. Mat. Ital. A (5), 14(3):526–529, 1977. 122, 127
    [133] Elie Bretin. Approximation par champ de phase de mouvement par courbure moyenne anisotrope. In Rencontre du PPF Dysco 2009, 2009. 122, 123, 125, 127
    [134] T. Chan and Wei Zhu. Level set based shape prior segmentation. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages 1164–1170 vol. 2, 2005. 123
    [135] Matthias Röger and Reiner Schätzle. On a modified conjecture of De Giorgi. Mathematische Zeitschrift, 254:675–714, 2006. 125, 127
    [136] Yuko Nagase and Yoshihiro Tonegawa. A singular perturbation prob-lem with integral curvature bound. Hiroshima mathematical journal, 37(3):455–489, 2007. 125, 128
    [137] Fabien Evrard, Fabian Denner, and Berend van Wachem. Surface Re-construction from Discrete Indicator Functions. IEEE Transactions on Visualization and Computer Graphics, 25(3):1629–1635, 2019. 125
    [138] Ennio De Giorgi. Some remarks on Γ-convergence and least squares method. In Composite Media and Homogenization Theory: An International Centre for Theoretical Physics Workshop Trieste, Italy, January 1990, pages 135–142. Springer, 1991. 128
    [139] Rainer Backofen, Steven M Wise, Marco Salvalaglio, and Axel Voigt. Convexity splitting in a phase field model for surface diffusion. arXiv preprint arXiv:1710.09675, 2017. 130
    [140] Xue-Cheng Tai, Jooyoung Hahn, and Ginmo Jason Chung. A fast algo-rithm for Euler’s elastica model using augmented Lagrangian method. SIAM Journal on Imaging Sciences, 4(1):313–344, 2011. 131
    [141] Maryam Yashtini and Sung Ha Kang. Alternating direction method of multiplier for Euler’s elastica-based denoising. In Scale Space and Vari-ational Methods in Computer Vision: 5th International Conference, SSVM 2015, Lège-Cap Ferret, France, May 31-June 4, 2015, Proceedings 5, pages 690–701. Springer, 2015. 131
    [142] Liam Burrows, Weihong Guo, Ke Chen, and Francesco Torella. Repro-ducible kernel Hilbert space based global and local image segmenta-tion. Inverse Problems & Imaging, 2020. 150
    [143] Yiyao Zhang, Ke Chen, and Shang-Hua Yang. Demo Codes for Super-Resolution Surface Reconstruction from Few Low-Resolution Slices. https://github.com/cyiyoo/SurfaceReconstructionFromFewSlices, 2023. 154
    [144] Gyeongsik Ok, Kisang Park, Hyun Jung Kim, Hyang Sook Chun, and Sung-Wook Choi. High-speed terahertz imaging toward food quality inspection. Appl. Opt., 53(7):1406–1412, Mar 2014. 157
    [145] Mindaugas Karali ¯unas, Kinan E Nasser, Andrzej Urbanowicz, Irman-tas Kašalynas, Dalia Bražinskien ˙e, Svajus Asadauskas, and Gintaras Valušis. Non-destructive inspection of food and technical oils by tera-hertz spectroscopy. Scientific reports, 8(1):18025, 2018. 157
    [146] Bin Li, Zhao-xiang Sun, A-kun Yang, and Yan-de Liu. Study on de-tection of the internal quality of pumpkin seeds based on terahertz imaging technology. Journal of Food Measurement and Characterization, 17(2):1576–1585, 2023. 157
    [147] Maryelle Bessou, Bruno Chassagne, Jean-Pascal Caumes, Christophe Pradère, Philippe Maire, Marc Tondusson, and Emmanuel Abraham. Three-dimensional terahertz computed tomography of human bones. Appl. Opt., 51(28):6738–6744, Oct 2012. 157
    [148] Mukesh Jewariya, Emmanuel Abraham, Takayuki Kitaguchi, Yoshiyuki Ohgi, Masa aki Minami, Tsutomu Araki, and Takeshi Yasui. Fast three-dimensional terahertz computed tomography using real-time line projection of intense terahertz pulse. Opt. Express, 21(2):2423–2433, Jan 2013. 157, 158
    [149] Kirsti Krügener, Eva-Maria Stübling, Roksana Jachim, Bettina Kietz, Martin Koch, and Wolfgang Viöl. THz tomography for detecting dam-ages on wood caused by insects. Appl. Opt., 58(22):6063–6066, Aug 2019. 157
    [150] Yu Heng Tao, Anthony J. Fitzgerald, and Vincent P. Wallace. Non-Contact, Non-Destructive Testing in Various Industrial Sectors with Terahertz Technology. Sensors, 20(3), 2020. 157
    [151] Yi-Chun Hung, Ta-Hsuan Chao, Pojen Yu, and Shang-Hua Yang. Ter-ahertz spatio-temporal deep learning computed tomography. Opt. Ex-press, 30(13):22523–22537, Jun 2022. 158, 160, 162
    [152] Weng-Tai Su, Yi-Chun Hung, Po-Jen Yu, Chia-Wen Lin, and Shang-Hua Yang. Physics-Guided Terahertz Computational Imaging: A tutorial on state-of-the-art techniques. IEEE Signal Processing Magazine, 40(2):32–45, 2023. 158, 160
    [153] B. B. Hu and M. C. Nuss. Imaging with terahertz waves. Opt. Lett., 20(16):1716–1718, Aug 1995. 158
    [154] Daniel M. Mittleman, Stefan Hunsche, Luc Boivin, and Martin C. Nuss.
    T- ray tomography. Opt. Lett., 22(12):904–906, Jun 1997. 158
    [155] Nicholas Karpowicz, Hua Zhong, Jingzhou Xu, Kuang-I Lin, Jenn-Shyong Hwang, and X-C Zhang. Comparison between pulsed tera-hertz time-domain imaging and continuous wave terahertz imaging. Semiconductor Science and Technology, 20(7):S293, jun 2005. 158
    [156] Andrea Markelz, Scott Whitmire, Jay Hillebrecht, and Robert Birge. THz time domain spectroscopy of biomolecular conformational modes. Physics in Medicine & Biology, 47(21):3797, 2002. 158
    [157] Valeria Conti Nibali and Martina Havenith. New Insights into the Role of Water in Biological Function: Studying Solvated Biomolecules Using Terahertz Absorption Spectroscopy in Conjunction with Molec-ular Dynamics Simulations. Journal of the American Chemical Society, 136(37):12800–12807, 2014. PMID: 25127002. 158
    [158] Ken N Okada, Youtarou Takahashi, Masataka Mogi, Ryutaro Yoshimi, Atsushi Tsukazaki, Kei S Takahashi, Naoki Ogawa, Masashi Kawasaki, and Yoshinori Tokura. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. Nature communications, 7(1):12245, 2016. 158
    [159] Keiichiro Shiraga, Yuichi Ogawa, and Naoshi Kondo. Hydrogen Bond Network of Water around Protein Investigated with Terahertz and In-frared Spectroscopy. Biophysical Journal, 111(12):2629–2641, 2016. 158
    [160] Gabor T Herman. Fundamentals of computerized tomography: image re-construction from projections. Springer Science & Business Media, 2009. 158
    [161] David J Brenner and Eric J Hall. Computed tomography—an increas-ing source of radiation exposure. New England journal of medicine, 357(22):2277–2284, 2007. 158
    [162] Bradley Ferguson, Shaohong Wang, Doug Gray, Derek Abbot, and X.-
    C. Zhang. T-ray computed tomography. Opt. Lett., 27(15):1312–1314, Aug 2002. 158
    [163] B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats,
    J- P. Caumes, and E. Abraham. Investigation on reconstruction meth-ods applied to 3D terahertz computed tomography. Opt. Express, 19(6):5105–5117, Mar 2011. 158
    [164] Takeshi Yasui, Eisuke Saneyoshi, and Tsutomu Araki. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Applied Physics Letters, 87(6):061101, 08 2005. 159
    [165] Youngchan Kim and Dae-Su Yee. High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling. Opt. Lett., 35(22):3715–3717, Nov 2010. 159
    [166] Richard Al Hadi, Hani Sherry, Janusz Grzyb, Yan Zhao, Wolfgang Forster, Hans M. Keller, Andreia Cathelin, Andreas Kaiser, and Ull-rich R. Pfeiffer. A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imag-ing Applications in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 47(12):2999–3012, 2012. 159
    [167] Natsuki Nemoto, Natsuki Kanda, Ryo Imai, Kuniaki Konishi, Masaru Miyoshi, Seiji Kurashina, Tokuhito Sasaki, Naoki Oda, and Makoto Kuwata-Gonokami. High-Sensitivity and Broadband, Real-Time Ter-ahertz Camera Incorporating a Micro-Bolometer Array With Resonant Cavity Structure. IEEE Transactions on Terahertz Science and Technology, 6(2):175–182, 2016. 159
    [168] Nezih Tolga Yardimci and Mona Jarrahi. High sensitivity terahertz detection through large-area plasmonic nano-antenna arrays. Scientific reports, 7(1):42667, 2017. 159
    [169] Xurong Li, Deniz Mengu, Aydogan Ozcan, and Mona Jarrahi. Super-Resolution Terahertz Imaging Through a Plasmonic Photoconductive Focal-Plane Array. In CLEO 2023, page SM1N.2. Optica Publishing Group, 2023. 159
    [170] Qi Li, Qiguo Yin, Rui Yao, Shenghui Ding, and Qi Wang. Continuous-wave terahertz scanning image resolution analysis and restoration. Op-tical Engineering, 49(3):037007–037007, 2010. 159
    [171] Sheng-Hui Ding, Qi Li, Rui Yao, and Qi Wang. High-resolution tera-hertz reflective imaging and image restoration. Appl. Opt., 49(36):6834–6839, Dec 2010. 159
    [172] Dan C Popescu and Andrew D Hellicar. Point spread function estima-tion for a terahertz imaging system. EURASIP Journal on Advances in Signal Processing, 2010:1–8, 2010. 159
    [173] Kiarash Ahi. Mathematical Modeling of THz Point Spread Function and Simulation of THz Imaging Systems. IEEE Transactions on Terahertz Science and Technology, 7(6):747–754, 2017. 159
    [174] Kiarash Ahi, Sina Shahbazmohamadi, and Navid Asadizanjani. Qual-ity control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging. Optics and Lasers in Engineering, 104:274–284, 2018. Optical Tools for Metrology, Imaging and Diagnostics. 159
    [175] Tak Ming Wong, Matthias Kahl, Peter Haring Bolívar, and Andreas Kolb. Computational image enhancement for frequency modulated continuous wave (FMCW) THz image. Journal of Infrared, Millimeter, and Terahertz Waves, 40:775–800, 2019. 159
    [176] Yue Li, Li Li, Andrew Hellicar, and Y. Jay Guo. Super-resolution re-construction of terahertz images. In James O. Jensen, Hong-Liang Cui, Dwight L. Woolard, and R. Jennifer Hwu, editors, Terahertz for Military and Security Applications VI, volume 6949, page 69490J. International Society for Optics and Photonics, SPIE, 2008. 159
    [177] Kiarash Ahi. A method and system for enhancing the resolution of terahertz imaging. Measurement, 138:614–619, 2019. 159
    [178] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Pro-ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016. 159
    [179] Zeng Li, Zhaofeng Cen, and Xiaotong Li. A terahertz image super-resolution reconstruction algorithm based on the deep convolutional neural network. In Yadong Jiang, Haimei Gong, Weibiao Chen, and Jin Li, editors, AOPC 2017: Optical Sensing and Imaging Technology and Ap-plications, volume 10462, page 104621E. International Society for Optics and Photonics, SPIE, 2017. 160
    [180] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Learning a single convo-lutional super-resolution network for multiple degradations. In Pro-ceedings of the IEEE conference on computer vision and pattern recognition, pages 3262–3271, June 2018. 160
    [181] Zhenyu Long, Tianyi Wang, ChengWu You, Zhengang Yang, Kejia Wang, and Jinsong Liu. Terahertz image super-resolution based on a deep convolutional neural network. Appl. Opt., 58(10):2731–2735, Apr 2019. 160
    [182] Wan Yibin, Zhang Rongyue, Xiao Hong, Wang Hao, Yihao Pan, and Yu-bin Zhou. Terahertz Image Super-Resolution Reconstruction of Passive Safety Inspection Based on Generative Adversarial Network. In 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages 22–27, 2019. 160
    [183] Qi Mao, Yunlong Zhu, Cixing Lv, Yao Lu, Xiaohui Yan, Shihan Yan, and Jingbo Liu. Convolutional neural network model based on ter-ahertz imaging for integrated circuit defect detections. Opt. Express, 28(4):5000–5012, Feb 2020. 160
    [184] Ying Wang, Feng Qi, and Jinkuan Wang. Terahertz image super-resolution based on a complex convolutional neural network. Opt. Lett., 46(13):3123–3126, Jul 2021. 160
    [185] Xiuwei Yang, Dehai Zhang, Zhongmin Wang, Yanbo Zhang, Jun Wu, Biyuan Wu, and Xiaohu Wu. Super-resolution reconstruction of tera-hertz images based on a deep-learning network with a residual channel attention mechanism. Appl. Opt., 61(12):3363–3370, Apr 2022. 160
    [186] Avinash C Kak and Malcolm Slaney. Principles of Computerized Tomo-graphic Imaging. SIAM, 2001. 164
    [187] Matthias Röger and Reiner Schätzle. On a Modified Conjecture of De Giorgi. Mathematische Zeitschrift, 254(4):675, 2006. 165
    [188] Z. Wang, E.P. Simoncelli, and A.C. Bovik. Multiscale structural similar-ity for image quality assessment. In The Thirty-Seventh Asilomar Confer-ence on Signals, Systems & Computers, 2003, volume 2, pages 1398–1402 Vol.2, 2003. 172
    [189] Richard Dosselmann and Xue Dong Yang. A comprehensive assess-ment of the structural similarity index. Signal, Image and Video Process-ing, 5:81–91, 2011. 172
    [190] Agnieszka Siemion. The Magic of Optics—An Overview of Recent Ad-vanced Terahertz Diffractive Optical Elements. Sensors, 21(1), 2021. 172
    [191] Yiyao Zhang, Ke Chen, and Shang-Hua Yang. Demo Codes for BLIss. https://github.com/cyiyoo/BLIss, 2024. 183
    [192] Jens Kießling, Ingo Breunig, PG Schunemann, Karsten Buse, and KL Vodopyanov. High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecu-lar spectroscopy. New Journal of Physics, 15(10):105014, 2013. 186
    [193] Jingle Liu, Jianming Dai, See Leang Chin, and X-C Zhang. Broadband terahertz wave remote sensing using coherent manipulation of fluores-cence from asymmetrically ionized gases. Nature Photonics, 4(9):627–631, 2010. 186
    [194] Mira Naftaly, AP Foulds, RE Miles, and AG Davies. Terahertz trans-mission spectroscopy of nonpolar materials and relationship with com-position and properties. International Journal of Infrared and Millimeter Waves, 26:55–64, 2005. 186
    [195] E Berry. Risk perception and safety issues. Journal of Biological Physics, 29:263–267, 2003. 186
    [196] Richard H Clothier and Nicola Bourne. Effects of THz exposure on human primary keratinocyte differentiation and viability. Journal of Biological Physics, 29:179–185, 2003. 186
    [197] Sung-Hyeon Park, Jin-Wook Jang, and Hak-Sung Kim. Non-destructive evaluation of the hidden voids in integrated circuit pack-ages using terahertz time-domain spectroscopy. Journal of Microme-chanics and Microengineering, 25(9):095007, 2015. 186
    [198] Yiwen Sun, Ming Yiu Sy, Yi-Xiang J Wang, Anil T Ahuja, Yuan-Ting Zhang, and Emma Pickwell-MacPherson. A promising diagnostic method: Terahertz pulsed imaging and spectroscopy. World journal of radiology, 3(3):55–65, 2011. 186
    [199] Euna Jung, Hyuck Jae Choi, Meehyun Lim, Hyeona Kang, Hongkyu Park, Haewook Han, Byung-hyun Min, Sangin Kim, Ikmo Park, and Hanjo Lim. Quantitative analysis of water distribution in human ar-ticular cartilage using terahertz time-domain spectroscopy. Biomedical Optics Express, 3(5):1110–1115, 2012. 186
    [200] Tzu-Fang Tseng, Szu-Chi Yang, Yuan-Ta Shih, Yuan-Fu Tsai, Tzung-Dau Wang, and Chi-Kuang Sun. Near-field sub-THz transmission-type image system for vessel imaging in-vivo. Optics Express, 23(19):25058–25071, 2015. 186
    [201] Ralf Gente and Martin Koch. Monitoring leaf water content with THz and sub-THz waves. Plant methods, 11(1), 2015. 186
    [202] Yutaka Oyama, Li Zhen, Tadao Tanabe, and Munehito Kagaya. Sub-terahertz imaging of defects in building blocks. Ndt & E International, 42(1):28–33, 2009. 186
    [203] Li Yi, Yosuke Nishida, Tomoki Sagisaka, Ryohei Kaname, Ryoko Mizuno, Masayuki Fujita, and Tadao Nagatsuma. Towards Prac-tical Terahertz Imaging System With Compact Continuous Wave Transceiver. Journal of Lightwave Technology, 39(24):7850–7861, 2021. 186
    [204] Yaheng Wang, Li Yi, Masayoshi Tonouchi, and Tadao Nagatsuma. High-Speed 600 GHz-Band Terahertz Imaging Scanner System with Enhanced Focal Depth. Photonics, 9(12), 2022. 186
    [205] Richard Al Hadi, Hani Sherry, Janusz Grzyb, Yan Zhao, Wolfgang Forster, Hans M Keller, Andreia Cathelin, Andreas Kaiser, and Ull-rich R Pfeiffer. A 1 k-pixel video camera for 0.7-1.1 terahertz imag-ing applications in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 47(12):2999–3012, 2012. 187
    [206] Mikhail Dyakonov and Michael Shur. Detection, mixing, and fre-quency multiplication of terahertz radiation by two-dimensional elec-tronic fluid. IEEE transactions on electron devices, 43(3):380–387, 1996. 187
    [207] W Knap, Y Deng, S Rumyantsev, and MS Shur. Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors. Applied physics letters, 81(24):4637–4639, 2002. 187
    [208] W Knap, V Kachorovskii, Y Deng, S Rumyantsev, J-Q Lü, R Gaska, MS Shur, Grigory Simin, X Hu, M Asif Khan, et al. Nonresonant detec-tion of terahertz radiation in field effect transistors. Journal of Applied Physics, 91(11):9346–9353, 2002. 187
    [209] W Knap, F Teppe, Y Meziani, N Dyakonova, J Lusakowski, F Boeuf, T Skotnicki, D Maude, S Rumyantsev, and MS Shur. Plasma wave de-tection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Applied Physics Letters, 85(4):675–677, 2004. 187
    [210] Ori Katz, Pierre Heidmann, Mathias Fink, and Sylvain Gigan. Non-invasive single-shot imaging through scattering layers and around cor-ners via speckle correlations. Nature photonics, 8(10):784–790, 2014. 187
    [211] Rui Ma, Yun Jiang Rao, Wei Li Zhang, and Bo Hu. Multimode random fiber laser for speckle-free imaging. IEEE Journal of Selected Topics in Quantum Electronics, 25(1):1–6, 2018. 187
    [212] Azat Ismagilov, Anastasia Lappo-Danilevskaya, Yaroslav Grachev, Boris Nasedkin, Victor Zalipaev, Nikolay V Petrov, and Anton Tcyp-kin. Ghost imaging via spectral multiplexing in the broadband tera-hertz range. Journal of the Optical Society of America B, 39(9):2335–2340, 2022. 187
    [213] Atsushi Nakanishi and Hiroshi Satozono. Terahertz optical properties of wood–plastic composites. Applied Optics, 59(4):904–909, 2020. 187
    [214] Graham E Town, Sajad Ghatreh-Samani, Stefan Busch, and Martin Koch. THz diffuser using an air-polymer composite material. In: 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013. 187
    [215] M Jaax, S Wolff, B Laegel, and H Fouckhardt. Optical and THz Galois diffusers. Journal of the European Optical Society, 8:13020, 2013. 187
    [216] Mira Naftaly and Robert E Miles. Terahertz time-domain spectroscopy for material characterization. Proceedings of the IEEE, 95(8):1658–1665, 2007. 188, 190
    [217] Joseph W Goodman. Speckle phenomena in optics: theory and applications. Roberts and Company Publishers, 2007. 193
    [218] Gaoming Li, Yishen Qiu, and Hui Li. Coherence theory of a laser beam passing through a moving diffuser. Optical Express, 21(11):13032–13039, 2013. 193
    [219] Joseph W Goodman. Introduction to Fourier optics. Roberts and Com-pany publishers, 2005. 198
    [220] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image qual-ity assessment: from error visibility to structural similarity. IEEE Trans-actions on Image Processing, 13(4):600–612, 2004. 200, 206
    [221] Kim-Han Thung and Paramesran Raveendran. A survey of image quality measures. In 2009 International Conference for Technical Postgrad-uates (TECHPOS), pages 1–4, 2009. 200, 206
    [222] Alain Horé and Djemel Ziou. Image Quality Metrics: PSNR vs. SSIM. In 2010 20th International Conference on Pattern Recognition, pages 2366–2369, 2010. 200, 206
    [223] Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Transactions on Image Processing, 21(12):4695–4708, 2012. 201, 206
    [224] Anish Mittal, Rajiv Soundararajan, and Alan C. Bovik. Making a “Completely Blind” Image Quality Analyzer. IEEE Signal Processing Letters, 20(3):209–212, 2013. 202, 206
    [225] Hao Ding, Fajing Li, Zhang Meng, Shaotong Feng, Jun Ma, Shouping Nie, and Caojin Yuan. Auto-focusing and quantitative phase imaging using deep learning for the incoherent illumination microscopy sys-tem. Optics Express, 29(17):26385–26403, 2021. 209
    [226] Yichen Wu, Yair Rivenson, Yibo Zhang, Zhensong Wei, Harun Günay-din, Xing Lin, and Aydogan Ozcan. Extended depth-of-field in holo-graphic imaging using deep-learning-based autofocusing and phase recovery. Optica, 5(6):704–710, 2018. 209
    [227] Hui Yuan, Daniel Voß, Alvydas Lisauskas, David Mundy, and Hart-mut G. Roskos. 3D Fourier imaging based on 2D heterodyne detection at THz frequencies. APL Photonics, 4(10):106108, 10 2019. 209
    [228] Mingjun Xiang, Hui Yuan, Lingxiao Wang, Kai Zhou, and Hartmut G. Roskos. Amplitude/Phase Retrieval for Terahertz Holography with Supervised and Unsupervised Physics-Informed Deep Learning, 2022. 209

    QR CODE