研究生: |
徐漾漾 Hsu, Yang-Yang |
---|---|
論文名稱: |
以反應程序控制白金原子團之表面修飾對鈷鈀層疊結構奈米晶體原子結構與氧還原活性 Surface decoration effects of Pt atomic clusters to atomic structure and corresponding oxygen reduction reaction activity of Co@Pd nanocatalysts |
指導教授: |
陳燦耀
Chen, Tsan-Yao |
口試委員: |
林滄浪
Lin, Tsang-Lang 陳柏均 Chen, Po-Chun |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 燃料電池 、氧氣還原反應 、電化學 、質量活性 、加速劣化測試 、耐久度 |
外文關鍵詞: | Fuel Cell, Oxygen Reduction Reaction, Electrochemistry, Mass Activity, Accelerated Degradation Test, Durability |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過濕式化學還原法,以硼氫化鈉當作還原劑,依序將鈷(Co)、鈀(Pd)與鉑(Pt)金屬離子還原至酸化奈米碳管(CNT)上,形成鈷核鈀殼層疊結構,表面修飾三角形排列鉑原子團的三元金屬奈米顆粒,作為鹼性燃料電池陰極觸媒材料。與20wt%商業用鉑奈米觸媒相比,本研究製備的觸媒貴金屬含量低,鉑金屬負載量降低至1.2~13wt%;具有高氧氣還原反應活性,氧氣還原反應電流強度提高10倍,質量電流密度提高了30倍;以及高穩定性與絕佳耐久度,可以連續工作8個月,超過32萬次的電壓循環壽命,效率沒有衰退,也無發生降解現象。
本研究分為三個部分,探究不同的觸媒製備方法對於其結構與活性之關聯:第一為改變鉑的使用量,探討不同的鉑含量團簇的分散性與顆粒大小對於奈米晶體成長方式以及氧氣還原反應的活性影響;第二為調整鉑還原的時間,探討鉑在鈷核鈀殼粒子表面或內部對於氧氣還原反應的活性與觸媒結構影響,並了解鉑在其粒子上的成長模式;第三為控制鉑還原的溫度,探討反應動力學對於奈米粒子成長的影響,分析還原溫度對於氧氣還原反應活性與穩定性的影響。
本研究製備出的鉑原子團修飾鈷核鈀殼結構三元金屬奈米觸媒,藉由調整鉑含量、鉑還原時間、鉑還原溫度,確定不同鉑金屬結構的變化與觸媒氧氣還原反應活性的關聯性,有效增加催化電流、提高穩定性與耐久度、降低鉑使用量與成本,為鹼性燃料電池奠立新的里程碑。
Nanocatalysts with cobalt-palladium core-shell structures and surface decoration of atomic scale platinum-trimer clusters are synthesized by using a self-aligned wet chemical reduction method in carbon nanotube supports for the use in alkaline fuel cell cathodes. The CoPdPt nanocatalyst contains a low platinum loading of only 2.4 wt% while a commercial platinum catalyst contains a platinum loading of 20 wt%. The mass activity of CoPdPt nanocatalyst has been increased to 30 times as compared to that of a commercial platinum catalyst. It shows an extraordinary stability and an outstanding durability in the accelerated degradation test (ADT) for over 320k potential cycles in an alkaline electrolyte without degradation, which is attributed to the decoration of atomic scale platinum-trimer clusters.
This study is divided into 3 parts. The structural characterizations and electrochemical analyses are compared with (1) different platinum loadings, (2) different platinum reduction time and (3) different platinum reduction temperature.
The results reveal that the high current density with substantial stability in the oxygen reduction reaction (ORR) is attributed to a strong electronic coupling and interface lattice that extract electrons from cobalt and palladium atoms in the presence of atomic platinum clusters in the palladium shell. These findings are expected to be useful for surface engineering and design of advanced fuel cell catalysts with atomic-scale platinum decoration.
1. World Energy Balances, International Energy Agency, 2018.
2. Larminie J., and Dicks A, Fuel Cell Systems Explained Second Edition, 2003.
3. Toyota Motor Corporation, 2014.
4. Zhang, J., Z. Xia, and L. Dai, Carbon-based electrocatalysts for advanced energy conversion and storage. Science Advances, 2015. 1.
5. Electronic Supplementary Material, RSC Advances, 2016.
6. Seh, Z.W., et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017. 355.
7. Nørskov, J.K., et al., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B, 2004. 108(46): p. 17886-17892.
8. Shao, M., A. Peles, and K. Shoemaker, Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Letters, 2011. 11(9): p. 3714-3719.
9. Chen, C., et al., Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science, 2014. 343: p. 1339-1343.
10. Xie, R., Y. Pan, and H. Gu, Synthesis of Pt dendritic nanocubes with enhanced catalytic properties. RSC Advances, 2015. 5(21): p. 16497-16500.
11. Xie, S., et al., Atomic Layer-by-Layer Deposition of Pt on Pd Nanocubes for Catalysts with Enhanced Activity and Durability toward Oxygen Reduction. Nano Letters, 2014. 14(6): p. 3570-3576.
12. Strasser, P., et al., Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chemistry, 2010. 2: p. 454.
13. Park, S.-A., et al., Bifunctional enhancement of oxygen reduction reaction activity on Ag catalysts due to water activation on LaMnO3 supports in alkaline media. Scientific Reports, 2015. 5: p. 13552.
14. Do, C.L., et al., Properties of Pt/C nanoparticle catalysts synthesized by electroless deposition for proton exchange membrane fuel cell. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013. 4(3): p. 035011.