簡易檢索 / 詳目顯示

研究生: 阮弼群
Pi-chun Juan
論文名稱: 應用於非揮發性記憶元件介電層的鋯鈦酸鉛鐵電薄膜電性之研究
The Electrical Properties of Lead Zirconate Titanate Ferroelectric Thin Films for Dielectric Applications in Non-Volatile Memory Devices
指導教授: 李雅明 教授
Joseph Ya-Min Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 124
中文關鍵詞: 非揮發性記憶體鐵電材料MFIS 電容器MFIS 電晶體電流機制記憶窗
外文關鍵詞: Non-volatile memory, Ferroelectrics, MFIS capacitors, MFIS transistors, Conduction mechanisms, Memory window
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    鐵電材料 Pb(Zr0.53,Ti0.47)O3 (PZT) 應用於超大型積體電路記憶體如Ferroelectric random access memories (FRAM) and Dynamic random access memories (DRAM) 已逐漸受重視。PZT的高介電常數、鐵電極化-電場 (P-E Characteristics) 性質及快速轉換特性使它廣泛的被研究。本論文主要探討 PZT 在不同結構下的電流機制及 Memory window 與電流機制在不同 MFIS 結構下的探討。以下簡略說明:
    (1)Metal-PZT-metal (MIM) structure
    文獻上,電流-電壓特性很少提及與溫度的關係。在不同溫度和電場下的電流機制,更是附之闕如。本論文研究在低溫時的電流機制為 Space-charge-limited current (SCLC),而在高溫時電流機制為 Schottky emission。從 SCLC 的理論得知 Trap levels 及 Fermi level。如此電流-電壓特性能透過能帶圖作合理的解釋。
    (2)MIM structures with different electrodes
    文獻上,電流-電壓特性都是根據特定一種 MIM 結構作電流機制的分析。並無比較不同結構的電流機制及其原因的探討。本研究使用不同電極,來比較電流機制。發現使用 Au 及 Pt 上電極時電流機制不同。 PZT 在 Pt/PZT/Pt 的結構在低電壓時的電流機制為Ohmic conduction。而在高電壓時的電流機制為Poole-Frenkel emission。從 Ohmic conduction 的理論得知 Pt/PZT interface 的 Barrier Height,由此可建立 Pt/PZT/Pt 的能帶圖來解釋電流-電壓特性。
    (3)Metal-PZT-insulator-Silicon (MFIS) structures with different insulator materials
    Insulator 主要是防止鐵電層與 Si substrate 的交互反應。如果使用傳統的 SiO2 gate oxide,則無法承受分壓後的高電場。因此 High-κ 材料應用在 MFIS當 Insulator 是未來的發展趨勢。本研究用三種不同的High-κ 材料如 HfO2、 La2O3、Dy2O3 來當 Insulator。本研究探討三種 MFIS結構之在不同的電壓和溫度下的電流-電壓特性及電流機制。 Memory window 的大小及不同 Insulator 厚度對 Memory window 影響的探討。
    (4)Charge Trapping Effect of MFIS structures
    文獻上,我們只知道 Memory window 的 Degradation 是由於 Charge injection 的效應。對於 Charge injection 的機制與對 Memory window 的影響程度則無提及。本研究介紹一種模型,即應用 Constant stress 的改變,可由 C-V characteristics 得知 Memory window 的改變是受正 Charge或負 Charge 的影響,進而可以作定量分析。 Charging trapping 可由能帶圖的解釋及輔助。另外由MIM 及MFIS 結構下之不同的Stress transient current 亦可解釋 Charging trapping 效應。
    (5)MFIS transistors
    文獻上討論甚少,尤其是以lanthanide oxides來當insulator layer更是付之闕如。近年來lanthanide oxides逐漸受到重視,是因為比傳統binary oxides有因其有較好的thermal stability及相當的band offsets。本論文成功製作以lanthanide oxides, Dy2O3來當insulator layer的MFIS transistors.


    Abstract

    Lead zirconate titanate Pb(Zr0.53,Ti0.47)O3 (PZT) is a promising ferroelectric material for VLSI circuit applications especially in ferroelectric random access memories (FRAM) and DRAM. Its large dielectric constant and rapid switching characteristics can meet the requirements for both storage devices. However, before PZT films can be fully utilized, its electric properties need to be better understood. MFIS structure have emerged as promising non-volatile memory devices. The superior characteristics of MFIS include a single-device structure, low power consumption and non-destructive read-out operation. In this thesis, metal/PZT/metal capacitors, metal/PZT/insulator/silicon capacitors and metal/PZT/insulator/silicon transistors were fabricated.
    The temperature dependence of the current conduction mechanisms in Au/PZT/Pt metal-insulator-metal (MIM) thin film capacitors was investigated. The dominant current conduction mechanism from 300K to 375K is space-charge-limited current (SCLC) due to holes and changes to Schottky emission in the temperature range of 400K-500K. The transition voltage (Vtr) of SCLC conduction and the trap-filled-limited voltage (VTFL) were measured. The deep trap level extracted from VTFL is positioned at 0.39 eV above the valance band edge. The Au/PZT barrier height extracted from Schottky emission is 0.85 eV.
    The electrical conduction currents through the MIM capacitors depend on the electrode material due to different work functions of the metal electrodes. The conduction current observed in Au/PZT/Pt is lower by about two orders of magnitude compared to that of Pt/PZT/Pt at low field (<0.4 MV/cm) due to the larger barrier height for holes of Au/PZT. The energy band diagrams of the Au/PZT/Pt and Pt/PZT/Pt structures are compared. Hole transport is used to explain the conduction mechanisms in these two capacitor structures.
    MFIS capacitors with PZT ferroelectric layer and HfO2, La2O3 and Dy2O3 insulator layers were fabricated. The purpose of the insulator layer is to prevent the reaction and inter-diffusion between the ferroelectric layer and silicon substrate as well to improve the retention properties. The size of the capacitance-voltage (C-V) memory windows was investigated. The temperature dependence of the current conduction mechanisms through the MFIS capacitors was also investigated.
    The oxide trapped charges in the ferroelectric/insulator layers are studied by a voltage stress method. The flatband voltage (VFB) is measured before and after the voltage stress. The energy band diagram of the MFIS structure at inversion and accumulation modes are plotted and the VFB shift can be explained by the trapping or de-trapping of charges. The result is consistent with the charge trapping model.
    Metal-Ferroelectric-insulator-semiconductor (MFIS) field effect transistors with PZT ferroelectric layer and lanthanide oxide Dy2O3 insulator layer were fabricated. The memory windows measured from C-V curves of MFIS capacitors and IDS-VGS curves of MFIS transistors are consistent. The non-volatile operation of MFIS transistors was demonstrated by applying positive/negative writing pulses. A high driving current of 9 mA/mm was obtained even for long channel devices with a channel length of 20 mm. The electron mobility is 181 cm2/V-s. The retention properties of MFIS transistors was also measured.

    Contents Pages Chapter 1 Introduction 1.1 Overview – Ferroelectric materials 1 1.2 The application of lead zirconate titanate Pb (Zr0.53,Ti0.47)O3 2 1.2.1 Memory applications 2 1.2.2 Electrical properties 3 1.3 Outline of the thesis 3 Chapter 2 Physical properties of PZT thin films 2.1 Ferroelectric structure 5 2.2 Polarization and dielectric constant 6 2.2.1 Temperature dependence 6 2.2.2 Frequency dependence 7 2.3 Reliability issues 8 Chapter 3 Fabrication processes of PZT thin films 3.1 Deposition methods and annealing condition 10 3.2 Device fabrication 12 3.2.1 MIM capacitors 12 3.2.2 MFIS capacitors 13 3.2.3 MFIS transistors 14 3.2 XRD analysis 15 Chapter 4 Electrical conduction mechanisms in metal-PZT- metal (MIM) capacitors 4.1 Carrier type of PZT 18 4.2 Space charge leakage current (SCLC) at low temperature (< 375K) 19 4.2.1 Shallow traps 20 4.2.2 Deep traps 22 4.3 Conduction mechanisms at high temperature (> 375K) 23 4.3.1 Schottky emission 23 4.3.2 Poole-Frenkel emission 24 4.4 Energy band diagram of Au/PZT/Pt system 25 Chapter 5 Electrical conduction mechanisms in metal-PZT- metal (MIM) capacitors with different electrode materials 5.1 MIM capacitors with Pt top electrodes 28 5.1.1 Ohmic conduction 28 5.1.2 Poole-Frenkel emission 29 5.2 Conduction currents with energy band diagrams of Au/PZT/Pt and Pu/PZT/Pt capacitors 30 Chapter 6 Electrical conduction mechanisms in metal-PZT-insulator- metal (MFIS) capacitors with different insulator materials 6.1 Dielectric charges 33 6.2 C-V characteristics 34 6.2.1 C-V curve orientation - Memory window 34 6.2.2 C-V curve shift – Charge trapping 37 6.3 J-V characteristics 38 6.4 Energy band diagrams of MFIS capacitors with high-κ HfO2, Dy2O3 and La2O3 insulators 39 Chapter 7 Charge trapping effect of metal-PZT-insulator-metal (MFIS) capacitors 7.1 C-V characteristics under voltage stress 40 7.2 Energy band diagrams with applied voltages 41 7.3 Stress transient current 42 7.3.1 MFIS structures 42 7.3.2 MIM structures 43 Chapter 8 Electrical properties of metal-PZT-insulator-metal (MFIS) transistors 8.1 IDS-VGS characteristics 45 8.2 IDS-VDS characteristics 47 8.3 Retention properties 48 Chapter 9 Conclusions and Future Studies References 53 Tables and Figures 70 Vita 121 Publication List 123

    Reference

    [1] J. F. Scott, Feroelectric Memories, Springer-Verlag, Berlin, 2000.
    [2] Y. Xu, Ferroelectric Materials and Their Applications, Elsevier Science Publishers, Amsterdam, 1991.
    [3] R. Ramesh, Thin Film Ferroelectric Materials and Devices, Kluwer Academic Publishers, Boston, 1997.
    [4] D. W. Bondurant and F. P. Gnadinger, “Ferroelectrics for nonvolatile RAMs,” IEEE, Spectrum, vol. 26, no. 7, pp30-33-30, 1989.
    [5] K. Kim, “1T1C FRAM,” Symp.VLSI Tech. Systems, and Applications, pp81-84, 2001.
    [6] S. Y. Lee, D. J. Jung, Y. J. Song, B. J. Koo, S. O. Park, H. J.Cho, S. J. Oh, D. S. Hwang, S. I. Lee, J. K. Lee, Y. S. Park, I. S. Jung, and K. Kim, “A FRAM technology using 1T1C and triple metal layers for high performance and high density FRAMs,” Symp. VLSI Tech. Dig., pp141-142, 1999.
    [7] N. Inoue, T. Nakura, and Y. Hayashi, “Low thermal-budget process of sputtered-PZT capacitor over multilevel metallization,” IEEE Trans. Electron Devices, ED-50, pp2081-2087, 2003.
    [8] T. Nakura, H. Mori, N. Inoue, N. Ikarashi, S. Takahashi, and N. Kasai, “A hydrogen barrier interlayer dielectric with a SiO2/SiON/SiO2 stacked film for logic- embedded FeRAMs,” IEDM Tech. Dig., pp801-804, 1999.
    [9] I. S. Park, “Ultra-thin EBL (encapsulated barrier layer) for ferroelectric capacitor,” IEDM Tech. Dig., pp617-620, 1997.
    [10] S. L. Lung, S. S. Chen, C.W. Tsai, T. T. Sheng, S. C. Lia, C. L. Liu, T. B. Wu, and R. Liu, “Low temperature PZT ferroelectric capacitor process for high density capacitor-over-interconnect (COI) FeRAM application,” Proceedings of the Six IEEE International Symposium on Solid-State and Integrated-Circuit Technology, vol. 1, pp692-695, 2001.
    [11] S. L. Lung, D. Lin, S. S. Chen, G. Weng, C. L. Liu, S. C. Lai, C. W. Tsai, T. B. Wu, and R. Liu, “Modularized low temperature LNO/PZT/LNO ferroelectric capacitor-over-interconnect (COI) FeRAM for advanced SOC (ASOC) application,” Proceedings of the IEEE Custom Integrated Circuits, pp479-482, 2002.
    [12] N. Inoue, T. Nakura, and Y. Hayashi, “Low thermal-budget fabrication of sputtered-PZT capacitor on multilevel interconnects for embedded FeRAM,” IEDM Tech. Dig., pp797-800, 2000.
    [13] H. Lung, S. C. Lai, H. Y. Lee, T. Wu, R. Liu, and C. Lu, “Low-temperature capacitor-over-interconnect (COI) modular FeRAM for SOC application,” IEEE Trans. Electron Devices, ED-51, pp920-926, 2004.
    [14] K. Amanuma, T. Tatsumi, Y. Maejima, S. Takahashi, H. Hada, H. Okizaki, and T. Kunio, “Capacitor-in-metal/via-stacked plug (CMVP) memory cell for 0.25 um CMOS embedded FeRAM,” IEDM Tech. Dig., pp363-366, 1998.
    [15] H. Toyoshima, S. Kobayashi, J. Yamada, T. Miwa, H. Koike, H. Takeuchi, H. Mori, N. Kasai, Y. Maejima, N. Tanabe, T. Tatsumi, and H. Hada, “FeRAM device and circuit technologies fully compatible with advanced CMOS,” Proceedings of the IEEE Custom Integrated Circuits, pp171-178, 2001.
    [16] S. E. Bernacki, in Ferroelectric Thin Films II, edited by A. I. Kingon, E. R. Myers, and B. Tuttle, MRS Symposia Proceedings, no. 243, pp135-140, 1992.
    [17] P. Li and T. Lu, “Conduction mechanisms in BaTiO3 thin films,” Phys, Rev. B-43, pp14261-14264, 1991.
    [18] G. W. Dietz, W. Antpöhler, M. Klee, and R. Waser “Electrode influence on the charge transport through SrTiO3 thin films,” J. Appl. Phys., vol. 78, pp6113-6121, 1995.
    [19] D. J. Wouters, G. J. Willems and H. E. Maes, “Electrical conductivity in ferroelectric thin films,” Micro. Eng. vol. 29, pp249-256, 1995.
    [20] M. H. Francombe, “Ferroelectric films for integrated electronics,” Physics of Thin Films,” vol. 17, pp225-230, 1993.
    [21] Z. G. Zhang, J. S. Liu, Y. N. Wang, J. S. Zhu, J. L. Liu, D. Su, and H. M. Shen, “Structure and voltage dependence of ferroelectric properties of SrBi2Ta2O9 thin films,” J. Appl. Phys., vol. 85, pp1746-1749, 1999.
    [22] M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, 1977.
    [23] F. Jona and G. Shirane, Ferroelectric Crystals, Dover Publications, New York, 1993.
    [24] C. Hu, Semiconductor Nonvolatile Memories, IEEE Press, New York, 1991.
    [25] T. Hori, Gate Dielectrics and MOS ULSIs, Principles, Technologies, and Applications, Springer, Berlin, 1997.
    [26] C. Kumar, M. Sayer, R. Pascual, D. T. Amm, Z. Wu, and D. M. Swanson, “Lead zirconate titanate films by rapid thermal processing,” Appl. Phys. Lett., vol. 58 pp1161-1163, 1991.
    [27] P. C. Fazan, “Trends in the development of ULSI DRAM capacitors,” Integrated. Ferroelectrics, vol. 3, no. 4, pp247-256, 1994.
    [28] R. A. Roy, K. F. Etzold, and J. J. Cuomo, “Ferroelectric Film Synthesis, Past and Present: A Select Review,” Mat. Res. Soc. Symp. Proc., 200, pp141-153, 1990.
    [29] A. Ishitani, P. Lesaicherre, S. Kamiyama, K. Amdo, H. Watanabe, “Trends in capacitor dielectrics for DRAMs,” IEICE Trans. on Electronics vol.E76-C, no.11, pp1564-1581, 1993.
    [30] T. Mihara, H. Yoshimori, H. Watanabe, C. Paz de Araujo1, “Characteristics of Bismuth layered SrBi2Ta2O9 thin-film capacitors and comparison with Pb(Zr, Ti)O3,” Jpn. J. Appl. Phys., vol. 34, no. 9B, p5233-5239, 1995.
    [31] Q. X. Jia, L. H. Chang, and W. A. Anderson, “Low leakage current BaTiO3 thin film capacitors using a multilayer construction,” Thin Solid Films, vol. 259, pp264-269, 1995.
    [32] Z. Q. Shi, Q. X. Jia, and W. A. Anderson “Development and fabrication of thin-film BaTiO3 capacitors using radio-frequency magnetron sputtering,” J. Vac. Sci. Technol. A vol. 11, pp1411-1413, 1993.
    [33] H. Tabata, O. Murata, T. Kawai, S. Kawai, and M. Okuyama “c-axis preferred orientation of laser ablated epitaxial PbTiO3 films and their electrical properties ,” Appl. Phys. Lett. vol. 64, pp428-430, 1994.
    [34] L. H. Parker and A. F. Tasch, “Ferroelectric materials for 64 Mb and 256 Mb DRAMs,” IEEE Circuits and Devices Magazine, vol. 6, pp17-26,. 1990.
    [35] R. W. Schwartz, B. A. Tuttle, D. H. Doughty, C. E. Land, D. C. Goodnow, C. L. Hernandez, T. J. Zender, S. L. Martinez, “Preparation and characterization of chemically derived (Pb,La)TiO 3 thin films,” IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, vol. 38, pp677-693, 1991.
    [36] S. K. Dey and J. J. Lee “Cubic paraelectric (nonferroelectric) perovskite PLT thin films with high permittivity for ULSI DRAMs and decoupling capacitors,” IEEE Trans. Electron Devices, ED-39, pp1607-1613, 1992.
    [37] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Academic Press, London, 1990.
    [38] A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications, Chapman & Hall, London, United Kingdom, 1990.
    [39] C. Kittel, Introduction to Solid State Physics, Seventh Edition, John Wiley & Sons, New York, 1996.
    [40]Y. Wu and G. Cao, “Ferroelectric and dielectric properties of strontium bismuth niobate vanadates,” J. Mater. Res., vol. 15, no. 7, pp1583-1589, 2000.
    [41] J. F. Scott, “The physics of ferroelectric ceramic thin films for memory applications,” G. W. Taylor and A. S. Bhalla, Ferroelectric Review, 1, 1, 1998.
    [42] D. Dimos, W. L. Warren, and H. N. al-Shareef, Thin Film Ferroelectric Materials and Devices, Kluwer Academic Publishers, Boston, 1997.
    [43] W. L. Warren, D. Dimos, B. A. Tuttle, R. D. Nasby, and G. E. Pike “Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue,” Appl. Phys. Lett. vol. 65, pp1018-1020, 1994.
    [44] W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clews, and D. C. McIntyre “Polarization suppression in Pb(Zr,Ti)O3 thin films,” J. Appl. Phys. vol. 77, pp6695-6702, 1995.
    [45] J. F. Scott and C. A. Paz de Araujo, “Ferroelectric memoriesScience,” Science, 246, pp1400-1405, 1989.
    [46] I. K. Yoo and S.B. Desu, “Domain Behavior in PZT Thin Film Capacitors,” Integ. Ferroelec. vol. 6, pp329-335, 1995.
    [47] I.K. Yoo and S.B. Desu, “Correlations Among Fatigue, Aging, and Leakage Currents of PZT Thin films Capacitors,” Mat Res. Soc. Symp. Proc., vol. 310, pp165-178 ,1993.
    [48] C. H. Park and D. J. Chadi “Microscopic study of oxygen-vacancy defects in ferroelectric perovskites.” Phys. Rev. B vol. 57, pp13961-13964, 1998.
    [49] Z. Wu and M. Sayer, “Defect structures and fatigue in ferroelectric PZT thin films” Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics, pp244-247, 1992.
    [50] G. Teowee, E. Quackenbush, C. Baertlein, J. Boulton, and D. Uhlmann, “Fatigue and retention behaviors of Pt-PZT-Metal capacitors with various top metallizations,” Proceedings of the Ninth IEEE International Symposium on Applications of Ferroelectrics, p523-526, 1994.
    [51] G. J. Norga, D. J. Wouters, A. Baeric, L. Fe, and H. E. Maes, “Effect of crystallization on fatigue in sol-gel PZT ferroelectric capacitors with reactively sputtered RuO2 electrode layers,” Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics, pp3-6,1998.
    [52] H. N. Al-Shareef, B. A. Tuttle, W. L. Warren, T. J. Headley, D. Dimos, J. A. Voigt, and R. D. Nasby, “Effect of B-site cation stoichiometry on electrical fatigue of RuO2//Pb(ZrxTi1–x)O3//RuO2 capacitors,” J. Appl. Phys. vol. 79, pp1013-1016, 1996.
    [53] H. N. Al-Shareef, D. Dimos, T. J. Boyle, W. L. Warren, and B. A. Tuttle, “Qualitative model for the fatigue-free behavior of SrBi2Ta2O9,” Appl. Phys. Lett. vol. 68, pp690-692, 1996.
    [54] U. Robels, L. Schneider, and G. Arlt, “Dielectric aging and its temperature dependence in ferroelectric ceramics,” Ferroelectrics, vol. 168, pp301-311, 1995.
    [55] W. A. Schulze and K. Ogino, “Review of literature on aging of dielectrics,” Ferroelectrics vol. 87, pp361-377, 1988.
    [56] H -J Hagemann, “Loss mechanisms and domain stabilisation in doped BaTiO3,” J. Phys. C: Solid State Phys., vol. 11, pp3333-3344, 1978.
    [57] R. C. Bradt and G. S. Ansell, “Aging in tetragonal ferroelectric barium titanate,” J. Am. Ceram. Soc. vol. 52, pp192-198, 1969.
    [58] L. Chen, H. Chen, J. Y. Lee, “An investigation on the Leakage Current and Time Dependent Dielectric Breakdown of Ferroelectric Lead-Zirconate-Titanate Thin Film Capacitors for Memory Device Applications,” Appl. Phys. Lett., vol. 69, no. 26, p4011-4013, 1996.
    [59] H. Chen, J. Lan, J. Chen, and J. Y. Lee, “Time-dependent and trap-related current conduction mechanism in ferroelectric Pb(ZrxTi1 – x)O3 films,” Appl. Phys. Lett. vol. 69, pp1713-1715, 1996.
    [60] J. Lee, C. Kim, and S. Joo, “Fatigue and Data Retention Characteristics of Single-Grained Pb(Zr,Ti)O3 Thin Films,”, Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics vol. 2, pp595-59, 2000.
    [61] G. Derbenwick and A. Isaacson, “Ferroelectric memory: on the brink of breaking through,” IEEE, Circuits and Devices, pp20-30, 2001.
    [62] J. Lee, R. Ramesh, V. G. Keramidas, W. L. Warren, G. E. Pike, and J. T. Evans, Jr., “Imprint and oxygen deficiency in (Pb,La)(Zr,Ti)O3 thin-film capacitors with La-Sr-Co-O electrodes,” Appl. Phys. Lett. vol. 66, pp1337-1339, 1995.
    [63] J. Lee, C. H. Choi, B. H. Park, T. W. Noh, and J. K. Lee, “Built-in voltages and asymmetric polarization switching in Pb(Zr,Ti)O3 thin film capacitors,” Appl. Phys. Lett. vol. 72, pp3380-3382, 1998.
    [64] S. Sadashivan, S. Aggarwal, T. K. Song, R. Ramesh, J. T. Evans, Jr., B. A. Tuttle, W. L. Warren, and D. Dimos, “Evaluation of imprint in fully integrated (La,Sr)CoO3/Pb(Nb,Zr,Ti)O3/(La,Sr)CoO3 ferroelectric capacitors,” J. Appl. Phys. vol. 83, pp2165-2171, 1998.
    [65] W. L. Warren, H. N. Al-Shareef, D. Dimos, B. A. Tuttle, and G. E. Pike, “Driving force behind voltage shifts in ferroelectric materials,” Appl. Phys. Lett. vol. 68, pp1681-1683, 1996.
    [66] R. Moazzami, C. Hu, and W. Sheoherd, “Electrical characteristics of ferroelectric PZT thin films for DRAM applcations,” Electron Device Lett. vol. 39, no 9, pp553-555, 2044-2049, 1992.
    [67] C. Kumar, R. Oascual, and M. Sayer, “Crystallization of sputtered lead zirconate titanate films by rapid thermal processing,” J. Appl. Phys., 71, no. 2, pp864-874, 1992.
    [68] N. Inoue, T. Takeuchi, and Y. Hayashi, “Sputtering process design of PZT capacitors for stable FeRAM operation,” IEDM Tech. Dig., pp819-822, 1998.
    [69] J. Kim, R. Khamankar, C. Dudhama, B. Jiang, J. Lee, P. Maniar, R. Moazzami, R. Jones, and C. Mogab, “La doped PZT films for Gigabit DRAM technology,” Symposium on VLSI Tech. Dig., pp151-153, 1994.
    [70] H. Kidoh, T. Ogawa, A. Morimoto, and T. Shimizu, “Ferroelectric properties of lead-zirconate-titanate films prepared by laser ablation,” Appl. Phys. Lett. vol. 58, pp2910-2912, 1991.
    [71] G. M. Davis and M. C. Gower, “Epitaxial growth of thin films of BaTiO3 using excimer laser ablation,” Appl. Phys. Lett., vol. 55, pp112-114, 1989.
    [72] T. Moise, S. Summerfelt, G. Xing, L. Colombo, T. Sakoda, S. Gilbert, A. Loke, S. Ma, R. Kavari, L. Wills, T. Hsu, J. Amano, S. Johnston, D. Vestyck, M. Russell, and S. Bilodeau, “Electrical properties of submicron (>0.13um2) Ir/PZT/Ir capacitor formed on W plugs,” IEDM Dig., pp940-942, 1999.
    [73] S. Krupanidhi, N. Maffei, M. Sayer, and K. El-Assal, “Rf planar magnetron sputtering and characterization of ferroelectric Pb(Zr,Ti)O3, ” J. Appl. Phys., vol. 54, 9B, pp6601-6609, 1983.
    [74] J. Carrano, C. Sudhama, V. Chikarmane, J. Lee, A. Tasch, W. Shepherd, and N. Abt, “Electrical and reliability properties of PZT thin films for ULSI DRAM applications,” IEEE Trans. on Ultrasonics, Ferro. and Frequency Control, vol. 38, no. 6, pp690-703, 1991.
    [75] S. Kobayashi, K. Amanuma, H. Mori, N. Kasai, Y. Maejima, A. Seike, N. Tanabe, T. Tatsumi, J. Yamada, T. Miwa, H. Koike, H. Hada, and H. Toyoshima, “64Kbit CMVP FeRAM macro with reliable retention/imprint characteristics,” IEDM Dig., pp783-786, 2000.
    [76] I. Stolichnov and A. Tagantsev, “Space-charge influenced-injection model for conduction in Pb(ZrxTi1-x)O3 thin films,” J. Appl. Phys., vol. 84, pp3216-3225, 1998.
    [77] L. Chen, “Crystallization dynamics and rapid thermal processing of PZT thin films,” Mat. Re. Soc. Symp. Proc. vol. 243, 1992.
    [78] C. Kwok. “Effect of thermal processing conditions on ferroelectric PZT thin films,” Mat. Re. Soc. Symp. Proc. vol. 200, pp83, 1990.
    [79] F. Roozeboom and N. Parekh, “Rapid thermal processing systems: a review with emphasis on temperature control,” J. Vac. Sci. Technol. B, vol. 8, pp55-60, 1990
    [80] M. P. Kassarjian, B. H. Fox, and J. V. Biggers, J. Am. Ceram. Soc., vol. 68, C1140, 1985.
    [81] C. E. Baumgartner, J. Am. Ceram. Soc., vol. 71, C350, 1988.
    [82] S. M. Landin and W. A. Schulze, J. Am. Ceram. Soc., vol. 73, 909, 1990.
    [83] K. Sreenivas, M. Sayer, T. Laursen, J. L. Whitton, R. Pascual, D. J. Johnson, D. T. Amm, G. I. Sproule, D. F. Mitchell, M. J. Graham, S. C. Gujrathi, and K. Oxorn, MRS Symp. Proc. in Ferroelectric Thin Film, vol. 200, pp255, 1990.
    [84] Z. Wu and M. Sayer, “Properties of sol gel processed PLZT (2/54/46) films on indium tin oxide.” IEEE Proc. of the Seventh Inter. Symp. on Applications of Ferroelectrics, pp677-680, 1990.
    [85] J. Chen, K. R. Udayakumar, K. G. Brooks, and L. E. Cross, “Rapid thermal annealing of sol-gel derived lead zirconate titanate thin films,” J. Appl. Phys. vol. 71, pp4465-4469, 1992.
    [86] H. M. Chen, S. W. Tsaur and J. Y. Lee, “Leakage current characteristics of lead-zirconate-titanate thin film capacitors for memory device applications,” Jpn. J. Appl. Phys., vol. 37, pp4056-4060, 1998.
    [87] C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, and C. J. Mogab, “A model for electrical conduction in metal-ferroelectric-metal thin-film capacitors” J. Appl. Phys. vol. 75, pp1014-1023, 1994.
    [88] T. K. Kundo and J. Y. Lee, “Thickness-dependent electrical properties of Pb(Zr, Ti)O3 thin film capacitors for memory device applications” J. Elecochem. So., vol. 147, pp326-329, 2000.
    [89] T. Mihara and H. Watanabe, “Electronic conduction characteristics of sol-gel ferroelectric Pb(Zr0.4Ti0.6)O3 thin-film capacitors,” Jpn. J. Appl. Phys., vol. 34, pp5664-5673, 1995.
    [90] P. W. M. Blom, M. Wolf, J. F. M. Cillessen, and M. P. C. M. Krijn, “Ferroelectric schottky diode,” Physics Rev. Lett., vol. 73, pp2107-2110, 1994.
    [91] I. K. Yoo and S. B. Desu, “Leakage current mechanism and accelerated unified test of lead zirconate titanate thin film capacitors.” Proceedings of the Eight IEEE International Symposium on the Applications of Ferroelectrics, pp225-228, 1992.
    [92] Y. S. Yang, S. L. Lee, S. H. Kim, B. G. Chae, and M. S. Jang, “Schottky barrier effects in the electronic conduction of sol-gel derived lead zirconate titanate thin film capacitors,” J. Appl. Phys., vol. 84, pp5005-5011, 1998.
    [93] W. Y. Hsu, J. D. Luttmer, R. Tsu, S. Summerfelt, M. Bedeker, T. Tokumoto, and J. Nulman, “Direct current conduction properties of sputtered Pt/(Ba0.7Sr0.3)TiO3/Pt thin films capacitors,” Appl. Phys. Lett. vol. 66, pp2975-2977, 1995.
    [94] J. P. Mckelvey, Solid State and Semiconductor Physics, Harper & Row, 1997.
    [95] J. G. Simmon, “Conduction in thin dieletric films,” J. Phys. D: Appl. Phys., vol. 4, pp613-657, 1971.
    [96] I. Stolichnov, A. K. Tagantsev, E. L. Colla, and N. Setter, “Cold-field-emission test of the fatigued state of Pb(ZrxTi1-x)O3 films,” Appl. Phys. Lett, vol. 73, pp1361-1363, 1998.
    [97] D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, “Photoinduced hysteresis changes and optical storage in (Pb,La)(Zr,Ti)O3 thin films and ceramics,” J. Appl. Phys. vol. 76, pp4305-4315, 1994.
    [98] R. Gerson and H. Jaffe, “Electrical Conductivity in Lead Titanate Zirconate Ceramics,” J. Phys. Chem. Solids, vol. 24, pp979-984, 1963.
    [99] L. Pintilie and I. Pintilie, “Ferroelectrics: new wide-gap materials for UV detection,” Mat. Sci. and Eng., vol. B80, pp388-391, 2001.
    [100] J. C. Shin, C. S. Hwang and H. J. Kim, “Leakage current of sol-gel derived Pb(Zr, Ti)O3 thin films having Pt electrodes,” Appl. Phys. Lett., vol. 75, 21, pp3411-3413, 1999.
    [101] C. H. Peng and S. B. Desu, “Modified envelope method for obtaining optical properties of weakly absorbing thin films and its application to thin films of Pb(Zr, Ti)O3 solid solutions,” J. Am. Ceram. Soc., vol. 77, pp928, 1994.
    [102] W. L. Warren, B. A. Tuttle, and P. J. McWhorter, “Identification of paramagnetic Pb+3 defects in lead zirconate titanate ceramics,” Appl. Phys. Lett., vol. 62, pp482-484, 1993.
    [103] S. Thakoor and J. Maserjian, “Photoresponse probe of the space charge distribution in ferroelectric lead zirconate titanate thin film memory capacitors,” J. Vac. Sci. Technol. A, vol. 12, pp295-299, 1994.
    [104] A. S. Grove, Physics and Technology of Semiconductor Devices, pp346, John Wiley & Son, New York, 1967.
    [105] D. V. Geppert, A. M. Cowley, and B. V. Dore. “Correlation of metal- semiconductor barrier height and metal work function; effects of surface states,” J. Appl. Phys. vol. 37, pp2458-2467, 1966.
    [106] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, Murray Hill, New Jersey, 1981.
    [107] A. Rose, “Space-charge-limited currents in solids,” Phys. Rev., vol. 97, 6, pp1538-1543, 1955.
    [108] M. A. Lampert and P. Park, Current Conduction in Solids, New York: Academic, 1970.
    [109] J. Yang and J. Shen, “Effects of discrete trap levels on organic light emitting diodes,” J. Appl. Phys. vol. 85, pp2699-2705, 1999.
    [110] K. Das, J. W. Palmour, J. B. Posthill, T. P. Humphreys, J. O’Sullivan-French, N. J. Byrd, D. Lu, J. J. Wortman, N. R. Parikh, “Deep-level dominated current- voltage characteristics of buried implanted oxide silicon-on-insulator,” Electron Device Lett. vol. 10, 3, pp135-137, 1989.
    [111] G. Yi, Zheng Wu, and M. Sayer, “Preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: electrical, optical, and electro-optic properties,” J. Appl. Phys. vol. 64, pp2717-2724, 1998.
    [112] J. P. McKelvey, Solid state and semiconductor physics, New York, 1971.
    [113] H. Hu and S. B. Krupanidhi, “Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr,Ti)O3 thin films,” J. Mat. Res.,vol. vol. 9, no. 6, pp1484-1498, 1994.
    [114] S. M. Cho and D.Y. Jeon, “Effect of annealing conditions on the leakage current characteristics of ferroelectric PZT thin films grown by sol-gel process,” Thin Solid Films, vol. 338, pp188-196, 1999.
    [115] J. F. Scott, C. A. Araujo and B. M. Melinick, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories,” J. Appl. Phys., vol. 70, pp382-388, 1991.
    [116] T. Nakamura, Y. Nakao, A. Kamisawa, and Takasu, “A single-transistor ferroeelctric memory cell, ” ISSCC Dig. Tech. Papers, pp68-69, 1995.
    [117] Y. Katoh, S, Fujieda, Y. Hayashi, and T. Kunio, “Non-volatile FCC memory cell with non-destructive read-out operation,” Symp. VLSI, Dig. Tech. Papers, pp56-57, 1996.
    [118] E. Tokumitsu, G. Fuji, and H. Ishiwara, “Nonvolatile ferroelectric-gate field effect transistor using SrBi2Ta2O9/Pt/StTa2O6/SiON/Si structure,” Appl. Phy. Lett., vol. 73, pp575-577, 1999.
    [119] Y. Shichi, S. Tanimoto, T. Goto, K. Kuroiwa, Y. Tarui, “Interaction of PbTiO3 films with Si substrate” Jpn. J. Appl. Phys. vol. 33, no. 9B, pp5172-7177, 1994.
    [120] E. Tokumitsu, K. Ttani, B. Moon, and H. Ishiwara, “Preparation of PbZrxTi1-xO3 films on Si substrates using SrTiO3 buffer layers” Proc. Mater. Res. Soc. Symo., vol. 361, pp427-432, 1995.
    [121] Y. Nakao, T. Nakamura, A. Kamisawa, and H. Takasu, “Study on ferroelectric thin films for application to NDRO nonvolatile memories” Integr. Ferro., vol. 6, pp5202-5206, 1995.
    [122] M. Liu and H. K. Kim, “Lead-zirconate-titanate-based metal/ferroelectric/insulator/semiconductor structure for nonvolatile memories.” J. Appl. Phys. vol. 91, pp5985-5996, 2002.
    [123] J. Park, J. Lee, C. Kim and S. Joo, ”Characteristics of Pb(Zr,Ti)O3/ZrTiO4 Double Layer on Si Substrates for NDRO MFISFET Devices.” Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics, vol 2, pp641-644, 2001.
    [124] S. Xiong and S. Sakai, “Memory properties of SrBi2Ta2O9 Thin Films Prepared on SiO2/Si Substrates.” Appl. Phys. Lett. vol. 75, pp1613-1615, 1999.
    [125] T. Choi, Y. S. Kim, C. W. Yang and J. Lee, “Electrical properties of Bi3.25La0.75Ti3O12 thin films on Si for a metal-ferroelectric-insulator-semiconductor structure.” Appl. Phys. Lett. vol. 79, pp1516-1518, 2001.
    [126] J. D. Park, J. W. Kim, and T. S. Oh, “Characteristics of the MFIS-FET structures processed using SBT ferroelectric thin films.” Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics, vol 2. P637- 640, 2000.
    [127] K. Choi, W. Shin, J. Yang and S. Yoon, “Metal/ferroelectric/insulator/semiconductor structure of Pt/SrBi2Ta2O9/YMnO3/Si using YMnO3 as the buffer layer.” Appl. Phys. Lett. vol. 75, pp722-724, 1999.
    [128] W. Lee, C. Shin, C. Cho, J. Lyu, B. Kim, B. Yu and K. Cho, “Electrical properties of SrBi2Ta2O9/insulator/Si structures with various insulators.” Jpn. J. Appl. Phys. vol. 38, pp2039-2043, 1999.
    [129] C. Chien, D. Wang, M. Yang, P. Lehnen, C. Leu, S. Chuang, T. Huang and C. Y. Chang, “High-performance Pt/SrBi2Ta2O9/HfO2/Si structure for nondestructive readout memory.” Electron Device Lett. vol. 24, pp553-555, 2003.
    [130] D. S. Shin, H. N. Lee, Y. T. Kim, I. H. Choi and B. H. Kim, “Electrical properties of Pt/ SrBi2Ta2O9/CeO2/SiO2/Si structure for nondestructive readout memory” Jpn. J. Appl. Phys. vol. 37, pp4373-7376, 1998.
    [131] H. N. Lee, M. Lim, Y. T. Kim, T. S. Kalkur and S. H. Choh, “Characteristics of metal/ferroelectric/insulator/semiconductor field effect transistors using a Pt/ SrBi2Ta2O9/Y2O3/Si structure.” Jpn. J. Appl. Phys. vol. 37, pp1107-1109, 1998.
    [132] C. Sun and S. Chen, “Effect of annealing temperature on physical and electrical properties of Bi3.25La0.75Ti3O12 thin films on Al2O3-buffered Si.” Appl. Phys. Lett. vol. 80, pp1984-1986, 2002.
    [133] Y. Fujisaki and T. Kijima, “High-performance metal-ferroelectric-insulator- semiconductor structures with a damage-free and hygrogen-free silicon-nitride buffer layer.” Appl. Phys. Lett. vol. 78, pp1285-1287, 2001.
    [134] Y. Lin, R. Puthenkovilakam, and J. P. Chang, “Dielectric property and thermal stability of HfO2 on silicon,” Appl. Phys. Lett. vol. 81, pp2041-2043, 2002.
    [135] S. K. Lee, Y. T. Kim and S. Kim, “Effects of Coercive Voltage and Charge Injection on Memory Windows of Metal-ferroelectric-insulator-semiconductor gate structures,” J. Appl. Phys. vol. 91, pp9303-9307, 2002.
    [136] F. Chiu, S. Lin and J. Y. Lee, “Electrical properties of metal-HfO2-silicon system measured from metal-insulator-semiconductor capacitors and metal-insulator-semiconductor field-effect transistors using HfO2 gate dielectric,” Microelectronics Reliability, vol. 45, pp961-964, 2005.
    [137] T. Hirai, Y. Fujisaki, K. Nagashima, H. Koike, and Y. Tarui, “Preparation of SrBi2Ta2O9 film at low temperatures and fabrication of a metal/ferroelectric/insulator/semiconductor field effect transistor using Al/SrBi2Ta2O9/CeO2/Si(100) structures,” Jpn. J. Appl. Phys. vol. 36, no. 9B, pp5908-5911, 1997.
    [138] N. A. Basit, H. K. Kim, and J. Blachere, “Growth of highly oriented Pb(Zr,Ti)O3 films in MgO-buffered oxidized Si substrates and its application to ferroelectric nonvolatile memory field-effect transistors,” Appl. Phy. Lett. vol 73, no. 26, pp3941-3943, 1998.
    [139] E. Tokumitsu, R. Nakamura, and H. Ishiwara, “Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FET’s using PLZT/STO/Si(100)structures,” Electron Device Lett. vol. 18, pp160-162, 1997.
    [140] A. Chin, M.Y. Yang, C. L. Sun, and S. Y. Chen, “Stack gate PZT/Al2O3 one transistor ferroelectric memory,” Electron Device Lett. vol. 22, pp336-338, 2001.
    [141] J. Yu, Z. Hong, W. Zhou, G. Cao, J. Xie, and X. Li, “Formation and characteristics of Pb(Zr,Ti)O3 field-effect transistor with a SiO2 buffer layer,” Appl. Phys. Lett. vol. 70, no. 4, pp490-492, 1997.
    [142] K. Aizawa, B. Park, Y. Kawashima, K. Takahashi, and H. Ishuwara, “Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors,” Appl. Phys. Lett. vol. 85, no. 15, pp3199-3201, 2004.
    [143] H. Lue, C. Wu, T. Tseng, “Device modeling of ferroelectric memory field-effect transistor for the application of ferroelectric random access memory,” IEEE Trans. On Ultrasonics, Ferro., and Freq. Control, pp5-14, 2003.
    [144] E. Tokumitsu, K. Okamoto, and H. Ishiwara, “Low voltage of nonvolatile metal-ferroelectric-metal-insulator-semiconductor (MFMIS)-field-effect-transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures,” Jpn. J. Appl. Phys., vol. 40, pp2917-2922, 2001.
    [145] T. Li, S. T. Hsu, B. Ulrich, H. Ying, L. Stecker, D. Evans, Y. Ono, J. Maa, amd J. J. Lee, “Fabrication and characterization of a Pb5Ge3O11 one-transistor-memory device,” Appl. Phy. Lett. vol 79, no. 11, pp1661-1663, 2001.
    [146] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, Y. Yoshihara, “Advanced gate dielectric materials for sub-100 nm CMOS,” Electron Devices Meeting, IEDM Digest, pp625-628, 2002.
    [147] S. Jeon, K. Im, H. Yang, H. Lee, H. Sim, S. Choi, T. Jang, and H. Hwang, “Excellent electrical characteristics of lanthanide (Pr, Nd, Sm, Gd, and Dy) oxide and lanthanide-doped oxide for MOS gate dielectric applications,” Electron Devices Meeting, IEDM Digest, pp471-474, 2001.
    [148] S. Ohmi, C. Kobayashi, I. Kashiwagi, C. Ohshima, H. Ishiwara, and H. Iwai, “Characterization of La2O3 and Yb2O3 thin films for high-k gate insulator application,” J. Electro. Chem. Soc. vol. 150, no. 7, pp134-140, 2003.
    [149] S. C. Chang, The Fabrication and Electrical Properties of Dy2O3 Thin Film Capacitors and Field-Effect Transistors, Master Thesis, Dept. of Electrical Engineering and Institute of Electronic Engineering, Tsing- Hua Univ., 2005.
    [150] K. Onishi, C. S. Kang, R. Choi, H. J. Cho, S. Gopalan, R. Nieh, S. Krisgnan, and J. C. Lee, “Effects of high-temperature forming gas anneal on HfO2 MOSFET performance,” Symposium on VLSI Technology, pp 22, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE