研究生: |
翁晟祐 Weng, Chen-Yu |
---|---|
論文名稱: |
一個使用距離理論的軟式輸入軟式輸出的Chase解碼器 A soft-input-soft-output Chase decoder architecture using distance-based decoding |
指導教授: |
翁詠祿
Ueng, Yeong-Luh |
口試委員: |
王忠炫
Wang, Chung-Hsuan 楊家驤 Yang, Chia-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 錯誤更正碼 、區塊渦輪碼 、距離理論解碼 |
外文關鍵詞: | Error Control Coding, Block Turbo Code, Distance-Based Decoding |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
錯誤更正碼是一種在資料傳遞前後做編解碼的技術,此技術可以保護資料不受外界干擾而損毀。在通訊傳輸或是硬體儲存上,都已經有廣泛的應用。近年來,區塊渦輪碼已被推薦應用在多個領域,像是IEEE 802.16e、衛星通訊系統、光纖傳輸系統以及記憶體儲存裝置等等。區塊渦輪碼的核心構造是其軟式輸入軟式輸出的解碼器。對於低錯誤品質的應用上,因為高複雜度和計算時間長的問題,要做出一個很有效率的解碼器是很難的。在這篇論文中,我們提出了一個可被應用於區塊渦輪碼上,使用距離理論的Chase軟式輸入軟式輸出解碼器。在整體的設計上,本篇論文提出了三個概念去提升整體的解碼效率,並且兼顧了面積成本上面的考量。我們應用了一個門檻排序演算法去找出四個最小的輸入訊號,一個以滾桶式移位器為基礎的尋錯電路去找出錯誤位置方程式的根,以及一個片段線性方程式去簡化淨輸出值的運算。這個解碼器的吞吐量有700Mbps,並且在面積上只佔了30K左右的邏輯閘數量。作為一個區塊渦輪碼的組成要素,我們提出的解碼器在錯誤率跟訊雜比的表現上有很好的貢獻。與現今提出過的區塊渦輪碼相比,在低訊雜比的應用中我們有0.4-0.9 dB的增益表現。文中的三個概念亦可看做獨立的設計,在降低複雜度以及提升解碼效率上面皆提出了改善的方式。
Recently, Block turbo codes have been suggested to many applications, such as IEEE 802.16e, satellite communication systems, optical fiber transmission systems and memory storages. The core of the block turbo code is the soft-input-soft-output (SISO) decoder. For high error performance applications, due to its high complexity and long decoding latency, it is hard to design an efficient SISO decoder. In this thesis, we proposed a SISO Chase decoder for a distance-based (64, 51, 6)2 block turbo code. The proposed decoder uses a threshold-sorting algorithm for finding 4-least-reliable inputs, a barrel-shifter-based error locator to finding roots of error locator polynomial,
and a piece-wise-linear function to simplify the calculations of the extrinsic values. The throughput of the decoder is about 700 Mbps, with lower than 30K gate counts. As a component code of block turbo codes, the proposed SISO decoder has good contributions in bit-error-rate (BER) over signal-noise ratio (SNR). Compare to existing block turbo decoders, the error performance has gain 0.4-0.9 dB in low SNR applications. In addition, the three concepts in this thesis can be designed individually. These designs give good solutions both in reducing complexity and increasing decoding speed.
[1] R. Pyndiah, “Near-optimum decoding of product codes: Block turbo codes,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1003-1010, Aug. 1998.
[2] D. Chase, “A class of algorithms for decoding block codes with channel measurement information,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 170182, Jan. 1972.
[3] IEEE, 802.16e-2005, IEEE Standard for Local and Met-ropolitan Area Networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, 2005.
[4] O. Ait Sab, O. V. Lemaire, “Block turbo code performances for longhaul DWDM optical transmission systems,” Optical Fiber Communication Conference, vol. 3, pp. 280-282, Mar. 2000.
[5] Goubier T., Dezan C., Pottier B., Jego C., “Fine grain parallel decoding of turbo product codes: Algorithm and architecture,” Turbo Codes and Related Topics, 2008 5th International Symposium on, pp. 90-95, Sep. 2008.
[6] Martin, P.A., Taylor, D.P., Fossorier, M.P.C., “Soft-input soft-output list-based decoding algorithm,” IEEE Trans. Commun., vol. 52, no. 2, pp.252-262 , Feb. 2004.
[7] Nong Le, M. Reza Soleymani, Y. R. Shayan, “Distance-based decoding of block turbo codes,” IEEE Commun. Lett., vol. 9, No. 11, pp. 1006-1008, Nov. 2005.
[8] Xingcheng Liu, Kang Wang, “Adaptive SNR estimation based decoding algorithm for block turbo codes,”Communications and Networking in China, 2009. ChinaCOM 2009. Fourth International Conference on, pp. 1-6, Aug. 2009.
[9] E. Obiedat, W. Xiang, J. Leis, and L. Cao, “Soft incremental redundancy for distributed turbo product codes,” 7th Annual IEEE Consumer Communications and Networking Conference, 2010.
[10] W. W. Peterson, “Encoding and error-correction procedures for the Bose-Chaudhuri codes,” IRE Trans. on Information Theory, vol. IT-6, pp. 459-470, September 1960.
[11] I. S. Reed, M. T. Shih, and T. K. Truong, “VLSI design of inverse-free Berlekamp-Massey algorithm,” Proc. Inst. Elect. Eng, vol. 138, pp. 295-298, Sept. 1991.
[12] R. Chien, “Cyclic decoding procedure for the Bose-Chaudhuri-Hocquenghem codes,” IEEE Trans. Inform. Theory, vol. IT-10, pp. 357-363, Oct. 1964.
[13] G. T. Chen, L. Cao, L. Yu, and C. W. Chen, “Test-pattern-reduced decoding for turbo product codes with multi-error-correcting eBCH codes,”Communications, IEEE Transactions on, vol. 57, pp. 307-310, 2009.
[14] G. D. Forney, Jr., “Generalized minimum distance decoding,” IEEE Trans. Inform. Theory, vol.IT-12, pp. 125-131, Apr 1966.
[15] S. A. Hirst, B. Honary, and G. Markarian, “Fast Chase algorithm with an application in turbo decoding,” IEEE Trans. Commun., vol.49, pp. 1693-1699, Oct 2001.
[16] R. Naseer and J. Draper, “Parallel double error correcting code design to mitigate multi-bit upsets in SRAMs,” Solid-State Circuits Conference, ESSCIRC 2008. 34th European, pp. 222-225, Sept 2008.
[17] Leroux C., Jego C., Adde P., and Jezequel M., “Towards Gb/s turbo decoding of product code onto an FPGA device,” Circuits and Systems,2007. ISCAS 2007. IEEE International Symposium on, pp. 909912, May 2007.
[18] Leroux C., Jego C., Adde P., Jezequel M., and D. Gupta, “A highly parallel turbo product code decoder without interleaving resource,” IEEE Workshop on Signal Processing Systems, pp. 16, 2008.
[19] E.Piriou, C. Jego, P. Adde, R. Le Bidan, M. Jezequel, “Efficient architecture for Reed Solomon block turbo code,” ISCAS 2006 : International Symposium on Circuits and Systems, IEEE Workshop on Signal Processing Systems, p. 3682-3685, May 2006.