研究生: |
王君智 Chun-Chih Wang |
---|---|
論文名稱: |
呼拉圈行為之動力學分析與工程設計 Dynamics of Hula Behavior and its Engineering Design |
指導教授: |
宋震國
Cheng-Kuo Sung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 146 |
中文關鍵詞: | 呼拉圈行為 、穩定度分析 、數值模擬 、偏心繞轉 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇研究中,首先描述呼拉圈行為的概念,並且對呼拉圈行為做出定義;進一步地,將提出呼拉圈系統的架構以及呼拉圈系統可能的應用方向。
本文研究的呼拉圈系統,其主質量是限制於一維運動,對於所假設的呼拉圈系統,可以推導出兩個二階微分的運動方程式,並且是非線性的,運動方程式透過近似解析方法與數值方法,可以得到系統參數對系統動態行為的關係,近似解析解會進一步透過穩定度分析,以了解在不同參數設定下,解存在的可能性。另外,數值分析方法可以計算出不同參數設定下的行為分佈狀況。
對於呼拉圈系統,除了以近似解析方法與數值方法分析運動方程式以觀察系統動態行為之外,尚會透過實驗的規劃與架設,來進一步觀察實際所存在的呼拉圈行為。
In this paper, the concept and definition of Hula motion will be introduced. Furthermore, the Hula system and its applications will also be mentioned.
In the analysis of Hula system, the motion of main mass is limited in one degree of freedom. There are two nonlinear differential equations developed for the Hula system with some assumptions. These two equations can be solved by approximate analysis and numerical simulation. The relations between system responses and system parameters can be revealed by the solutions of the equations of motion. The possibility of existence of the approximate analytical solutions can be evaluated by stability analysis. In addition, the motion of the Hula system about various system parameter settings can be analyzed by numerical method.
In addition to approximate analysis and numerical simulation, the various behaviors of the Hula system are also observed by experiment.
[1] Hatwal, H., Mallik, A. K., and Ghosh, A., 1983, “Forced Nonlinear Oscillation of an Autoparametric System,” Journal of Applied Mechanics, Vol. 50, Sep., pp. 657-662.
[2] Kapitaniak, T., Bishop, S. R., 1999, “Nonlinear Dynamics and Chaos,” Wiley, England.
[3] Whittaker, E. T., and Watson, G. N., 1958, “A Course of Modern Analysis,” Cambridge University Press.
[4] 經中央大學董必正老師的引介,與其學生蕭永嘉聯繫請教。