簡易檢索 / 詳目顯示

研究生: 謝國俊
Hsieh, Kuo-Chun
論文名稱: 新型蒸汽腔之設計參數測試
Parameter Tests for a Novel Vapor Chamber
指導教授: 王訓忠
Wong, Shwin-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 72
中文關鍵詞: 熱管平板式熱管蒸汽腔均溫板蒸發熱阻冷凝熱阻工作流體
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對一新型蒸汽腔(vapor chamber)進行不同設計參數之性能測試,此新型蒸汽腔利用平行溝槽取代上板毛細結構,因此在密封時毛細結構的連續性不會因此中斷,且平行溝槽能夠強化腔體結構,不需額外加入支撐物以減少加工難度,平行溝槽亦提供額外的路徑使工作流體回到蒸發區,並降低工作流體的流阻,提升蒸汽腔的熱傳極限。鰭片熱沉的底面積為100mm×89mm,蒸汽腔內部腔體尺寸為100mm×80mm,蒸汽腔底部中央處採21mm×21mm均勻受熱面模擬CPU熱源,並以風扇搭配鰭片熱沉作散熱。實驗參數包括上板溝槽尺寸、毛細結構組成、擺放角度、與工作流體。上板溝槽截面近似一正三角形,針對三種不同邊長之溝槽(2.0mm、1.6mm、1.0 mm)分別測試其性能。結果顯示,溝槽邊長小至1.0 mm時仍能得到與較大邊長溝槽時相近的散熱性能;銅網/銅粉複合式毛細結構,在中低加熱量時具較低且較穩定的熱阻值,且乾化延至較大加熱量才發生;本研究並將蒸汽腔作水平、垂直與倒置擺放,在性能上三種擺放角度無顯著差異,僅垂直擺放時,毛細力需克服重力才能將工作流體自下方拉回蒸發區,導致乾化提早發生;利用丙酮作工作流體之蒸汽腔熱阻值明顯高於以水為工作流體者,並且在較低的熱負載下即發生乾化現象。


    摘要 目錄 圖表目錄 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機及目的 2 第二章 基本理論與文獻回顧 6 2.1 蒸汽腔的工作原理 6 2.1.1 密閉容器 6 2.1.2 毛細結構 6 2.1.3 工作流體 7 2.1.4 蒸汽腔之操作極限 7 2.2 文獻回顧 8 2.2.1 蒸汽腔之優點 8 2.2.2 蒸發與沸騰特性 9 2.2.3 毛細結構對性能之影響  10 2.2.4 複合式毛細結構 13 2.2.5 擺放角度對效能之影響 14 2.2.6 工作流體 15 第三章 實驗方法 27 3.1 簡介 27 3.2 實驗配置與步驟 27 3.2.1 蒸汽腔 28 3.2.2 實驗設備 30 3.2.3 實驗步驟 32 3.2.4 熱阻計算之整理 34 第四章 實驗結果與討論 41 4.1 總熱阻與熱沉熱阻 41 4.2 填充量對性能之影響 42 4.3 W2.0與W1.6溝槽之性能比較 43 4.4 W1.6與W1.0溝槽之性能比較 43 4.5 蒸發區流道溝槽不相接的狀況 44 4.6 鰭片溫度分布 45 4.7 毛細結構對蒸汽腔性能之影響 46 4.7.1 不同網目毛細結構之比較 46 4.7.2 網目毛細擺放方向之影響 46 4.7.3 不同複合式毛細之性能比較 46 4.8 不同加熱面積下之性能比較 48 4.9 蒸發熱阻(Re)與冷凝熱阻(Rc) 49 4.10 擺放角度對蒸汽腔性能之影響 50 4.11 丙酮工作流體  51 第五章 結論 68 參考文獻 70

    [1] Mochizuki, M., Saito, Y., Kiyooka, F., and Nguyen, T., “The way we were and are going on cooling high power processors in the industries,” The Seventh International Symposium in Transport Phenomena, Toyama, Japan, September 4-8, 2006.
    [2] Grubb, K., CFD modeling of a Therma-Base heat sink, 8th International FLOTHERM User Conference, 1999.
    [3] Wong, S.-C. Wu, J.-D. and Han, W.-L. Experiments on a novel vapor chamber, ITHERM 2008 Conference, Orlando, FL, USA, May 28-31, 2008.
    [4] Boukhanouf, R., Haddad, A., North, M.T., and Buffone, C., “Experimental investigation of a flat plate heat pipe performance using IR thermal imaging,” Applied Thermal Engineering, 26 (2006) 2148–2156
    [5] Chang, J-Y., Prasher, R.S., Prstic, S., Cheng, P., and Ma, H.B.,
    “Evaporative thermal performance of vapor chambers under nonuniform heating conditions,” ASME Journal of Heat Transfer,130 (2008) 1215011-1215019.
    [6] Potash, M., and Wayner, P.C., “Evaporation from a two-dimensional extended meniscus”, International Journal of Heat and Mass Transfer, 15 (1972) 1851-1863.
    [7] C. Hohmann and P. Stephan, “Microscale temperature measurement
    at an evaporating liquid meniscus,” Experimental Thermal and Fluid
    Science, 26 (2002) 157-162.
    [8] Peterson, G.P., Wang, Y., and Li, C.“Evaporation/boiling in thin capillary wicks (І)–wick thickness effect,” ASME Journal of Heat Transfer, 128 (2006) 1312-1319.
    [9] Peterson, G.P., and Li, C. “Evaporation boiling in thin capillary wicks (II)–effects of volumetric porosity and mesh size,”ASME Journal of Heat Transfer, 128 (2006) 1320-1328.
    [10] Wang, Y. and Peterson, G.P., “Investigation of a novel flat heat pipe,” ASME Journal of Heat Transfer, 127 (2005) 165-170.
    [11] Hanlon, M.A., and Ma, H.B., “Evaporation heat transfer in sintered porous media,” ASME Journal of Heat Transfer, 125 (2003) 644-652.
    [12] Wang, Y., and Vafai, K., “An experimental investigation of thermal performance of an asymmetrical flat plate heat pipe,” Int. J. Heat Mass Transfer, 43 (2000) 2657-2668.
    [13] Masataka, M., Thang, N., Yuji, S., Yasuhiro, H.,Koich, M., Tanaphan, S., and Youji, K., “Latest vapor chamber technology for computer,” The 8th International Heat Pipe Symposium, Japan, September, 2006.
    [14] Hiroaki, A., Fumitoshi, K., Masataka, M., Koichi, M., Yuji, S., Youji, K., Thang, N., and Tien, N., “Advance thermal solution using vapor chamber technology for cooling high performance desktop cpu in
    notebook computer,” The 1st International Symposium on Micro & Nano Technology, Honolulu, Haiwaii, USA, March 4-17, 2004.
    [15] Jeung, S.G., “Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling,” Sensors and Actuators A 121 (2005) 549–556.

    [16] Kempers, R., Ewing, D.,and Ching, C.Y., “Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes,” Applied Thermal Engineering,26 (2006) 589-595.
    [17] Peterson, G.P., An Introduction to Heat Pipes, John Wiley&Sons, Inc, 1995.
    [18] Koichiro, T., Yuichi, F., and Shunta, U., “Fundamental investigation of roll bond heat pipe as heat spreader plate for notebook computers,” IEEE Transactions on Components and Packaging Technologies, 23 (2000) 80-85.
    [19] 劉展宏 “操作中平板熱管在不同燒結毛細結構與工作流體下之蒸發區可視化觀察與量測,” 國立清華大學動力機械工程研究所碩士論文, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE