研究生: |
李孟倫 Lee, Meng Lun |
---|---|
論文名稱: |
快速充電鋰離子二次電池負極複合碳材之研究 High-Rate Charge Composite Carbons for Li-ion Secondary Battery Anode Materials |
指導教授: |
施漢章
Shih, Han C. 葉均蔚 Yeh, Jien-Wei |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 鋰離子二次電池 |
外文關鍵詞: | Lithium ion battery |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電動車(Electric vehicle, EV)已知為本世紀最重要的工業產品之一,而鋰離子二次電池(lithium ion secondary battery)將是電動車能源的首要選擇,就這方面的應用而言,快速充電的需求是首要挑戰和亟需解決的問題,近幾年來鋰鈦氧(Li4Ti5O12) 這種尖晶石(spinel)結構的化合物成了熱門的快速充電鋰離子電池負極材料,然而雖然其材料本身具有快速充電的特性,但卻存在著電壓太高的問題,如此一來,在和鋰離子電池正極配合時,因全電池電壓太低將造成應用範圍狹隘的問題。中間相碳球 (meso-carbon micro beads, MCMB) 長期以來用在商業用途上,具有穩定的電容量及放電特性,惟較缺乏快速充電的能力。本研究中擬結合上述兩種負極材料的優點,將MCMB的表面包附上奈米等級的鋰鈦氧材料,進行改質,利用sol-gel方式合成一種Li4Ti5O12/MCMB複合負極材料。改質過後的複合負極材料以X光繞射分析確認其結構,並使用掃描式電子顯微鏡(SEM)確認其表面型態,而將此材料製成電極版組成半電池進行電性測試發現,此Li4Ti5O12/MCMB複合負極材料具有快速充電(即高速率充電)特性,在4C充電時,可充入的電容量為160-170 mAh/g,而在6C充電條件下,電容量仍能維持在150mAh/g以上,並且在0.05C-6C的充電速率下,都具有0.3V左右的穩定電壓平台及平穩的放電曲線,經多次循環測試,此材料仍具有快速充電的能力,電容量仍可維持穩定,最後以交流阻抗(AC)以及循環伏安(CV)測試,驗證此材料組成電池之導電性及氧化還原反應的特性。
The electric vehicle (EV) is going to be one of the most important industries in this century, and the lithium-ion batteries should be the main choice of its power. High rate charging of lithium-ion battery is the major problem of this electric device. Recently, titanium-based compounds like spinel Li4Ti5O12 has become a popular anode material for the lithium ion battery, although it has a high-rate charging property but it also has a higher voltage plateau which is too high to an anode of general lithium ion batteries, and makes the application become narrow. MCMB (meso-carbon micro beads) is extended to be the anode material of the commercial lithium ion batteries for a long period of time, which is stable in voltage, capacity and cycle life performance, but without high-rate charging capability. In this study, we combine the advantages of these two materials, using the sol-gel process to modify the MCMB by coating Li4Ti5O12 to make a new material of Li4Ti5O12/MCMB composite anode. The phase of the produced Li4Ti5O12/MCMB composites particles was determined using powder x-ray diffraction (PXRD), and the grain size and morphology of the particle were examined through the field emission scanning electron microscope (FE-SEM). Some other tests are done for checking the electrochemical properties of the Li4Ti5O12/MCMB composites anode, it do shows the high-rate charging capability, while charging at 4C, the charging capacity is 160-170 mAh/g, and while charging at 6C, it still maintains the capacity over150 mAh/g. Under the charging rate of 0.05-6C, the Li4Ti5O12/MCMB composite anode can always show a flat voltage plateau at 0.3V, after several charging and discharging cycle, it still has a high-rate charging capability, and maintains a stable capacity. Finally, we use AC impedance and cyclic voltammetry analysis to test the oxidation and reduction of this material.
[1] P. G. Bruce, “Solid-State Chemistry of Lithium Power Sources” Chem. Commun., 19 (1997) 1817-1824.
[2] H. P. Hsu, “方形二次鋰離子電池材料介紹” 工業材料, 130 (1997) 104
[3] S. P. Lin, “Synthesis and properties of LiNiO2 cathode materials for
Lithium-Ion battery” 國立成功大學材料系博士論文, June 2002.
[4] H. W. Chan, “Surface Modification of LiMn2O4 Cathode Material in Li-ion Secondary Battery” 國立清華大學博士論文, 2005.
[5] H. J. Orman and P. J. Wiseman, “Cobalt(III) Lithium Oxide, CoLiO2:
Structure Refinement by Powder Neutron Diffraction” Acta. Cryst., 40 (1984) 12-14
[6] E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner,
and H. W. Lin, “A Rechargeable Li/LixCoO2 Cell” J. Power Sources,21 (1987) 25-31.
[7] J. Molenda, A. Stoklosa, and T. Bak, “ Modification in the
Electronic-structure of Cobalt Bronze LixCoO2 and the Resulting
Electrochemical Properties” Solid State Ionics, 36 (1989) 53-58.
[8] T. Nagaura and K. Tozawa, “Lithium-ion rechargeable battery” Prog. Batt. Solar Cells, 9 (1990) 209-217.
[9] C. Delmas, “Alkali metal intercalation in layered oxides” Mater, Sci. Eng. B, 3 (1-2) (1989) 97-101.
[10] J.M. Chen, C.L. Tsai, C.Y. Yao, S.P. Sheu and H.C. Shih,
“Experimental Design Method Applied to Li/LiCoO2 Rechargeable Cells” Mater. Chem. Phys., Vol. 51/2, (1997) 100-194.
[11]C. C. Chang, J. Y. Kim, and P. N. Kumta, “Divalent cation incorporated Li(1+x)MMgxO2(1+x) (M = Ni0.75, Co0.25): viable cathode materials for rechargeable lithium-ion batteries” J. Power Sources, 89 (2000) 56-63.
[12] C. Delmas, J. P. Peres, A. Rougier, A. Demourgues, F. Weill, A.
Chadwick, M. Broussely, F. Perton, Ph. Biensan and P. Willmann, “On the behavior of the LixNiO2 system: an electrochemical and structure overview” J. Power Sources 68 (1997) 120.
[13] D. G. Wickham and W. J. Croft, “Crystallographic and magnetic properties of several spinels containing trivalent ja-1044 manganese” J. Phys. Chem. Solids, 7 (1958) 351-360.
[14] J. C. Hunter, “Preparation of A New crtstal Form of Manganese-
Dioxide – Lambda-MnO2” J. Solid State Chem., 39 (1981) 142-147.
[15] M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough,
“Lithium Insertion into Manganese Spinels” Mat. Res. Bull., 18 (4) (1983) 461-472.
[16] J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M.
Arakawa, “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte” J. Power Source, 74 (1998) 219-227.
[17] J.M. Chen, C.Y. Yao, S.P. Sheu, Y.C. Chiou and H.C. Shih, “The Study
of Carbon Half-Cell Voltage in Lithium Ion Secondary Batteries” J. Power Sources, Vol. 68, pp. 242-244 (1997).
[18] H Shi, J. Barker, M. Y. Saidi, and R. Koksbang, “Structure and Lithium intercalation Properties of Synthetic and Natural Graphite” J.Electrochem. Soc., 143 (1996) 3466.
[19] Akira Yoshino, “These Ten Years and Feature of Rechargeable Battery Materials” (2003) 110.
[20] Li Meng-Lun, Li I-Da, Chen Wen, Li Torng-Jinn”大容量及大功率磷酸鋰鐵電池的應用The High Power and High Capacity Application of Lithium iron phosphate Battery “, 2008北京動力鋰離子電池技術及產業發展國際論壇
[21] Tsutomu Takamura , Koji Endo, Lijun Fu, Yuping Wu, Kyeong Jik Lee, Takatoshi Matsumoto, “Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes” Electrochim. Acta 53 (2007) 1055–1061.
[22] Hiroyuki Uono, Bong-Chull Kim, Tooru Fuse, Makoto Ue, and Jun-ichi Yamaki, “Optimized Structure of Silicon/Carbon/Graphite Composites as an Anode Material for Li-Ion Batteries” J. of The Electrochem. Soc., 153, 9, (2006) A1708-A1713.
[23] Meng-Lun Lee, Jin-Ming Chen , Han C. Shih,” The Electrochemical Property of LiFePO4/SiC in high power soft package lithium ion battery”, 2008 ,14th International Meeting on Lithium Batteries conference.
[24] Y.F. Tang, L. Yang *, Z. Qiu, J.S. Huang, “Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets” Electrochem. Commun. 10 (2008) 1513–1516.
[25] T. Tanaka, K. Ohta, N. Arai, J. Power Sources 97–98 (2001) 2–6.
[26] R.A. Marsh, S. Vukson, S. Sarampudi, B.V. Ratnakumar, M.C. Smart, M. Manzo, P.J. Dalton, J. Power Sources 97–98 (2001) 25–27.
[27] K. Zaghib, P. Charest, A. Guerfi, J. Shim, M. Perrier, K. Striebel, J. Power Sources 134 (2004) 124–129.
[28] J.H. Lee, S. Lee, U. Paik, Y.M. Choi, J. Power Sources 147 (2005) 249–255.
[29] J.H. Lee, U. Paik, V.A. Hackley, Y.M. Choi, J. Electrochem. Soc.152 (2005) A1763–A1769.
[30] C. Menachem, Y. Wang, J. Flowers, E. Peled, S.G. Greenbaum, J. Power Sources 76 (1998) 180–185.
[31] S. Iijima, Nature 354 (1991) 56–58.
[32] J.-P. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Basca, A.J. Kulik, T. Stockli, N.A. Burnham, L. Forro, Phys. Rev. Lett. 82 (1999) 944–947.
[33] J.H. Lee, G.S. Kim, Y.M. Choi, Won Il Park, John A. Rogers, Ungyu Paik, J. Power Sources 184(2001) 308-311.
[34] K. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Science 311 (2006) 977–980.
[35] K. Sawai, T. Ohzuku, J. Electrochem. Soc.150 (2003) A674–A678.
[36] K.M. Abrham, Electrochim. Acta 38 (1993) 1233.
[37] R. Van de Krol, A. Goossens, J. Schoonman, J. Phys. Chem. B 103 (1999) 7151.
[38] M. Wagemaker, R. Van de Krol, A.P.M. Kentgens, A.A. Well, F.M. Mulder, J. Am. Chem. Soc. 123 (2001) 11454.
[39] M. Wagemaker, A.P.M. Kentgens, F.M. Mulder, Nature 418 (2002)397.
[40] L. Kavan, D. Fattakhova, P. Krtil, J. Electrochem. Soc. 146 (1999)1375.
[41] G. Sudant, E. Baudrin, D. Larcher, J.M. Tarascon, J. Mater. Chem.15 (2005) 1263.
[42] A.R. Armstrong, G. Armstrong, J. Canales, R. Garcia, P.G. Bruce, Adv. Mater. 17 (2005) 862.
[43] Ohzuku T, Ueda A, Yamamoto N., J. Electrochem. Soc. 1995;142:1431-5.
[44] Li JR, Tang ZL, Zhang ZT., Electrochem. Commun. 2005;7:894–9.
[45] Jiang CH, Hosono E, Ichihara M, Honma I, Zhou HS., J. Electrochem. Soc. 2008;155: A553–556.
[46] Tang YF, Yang L, Qiu Z, Huang JS. Electrochem. Commun. 2008;10:1513–6.
[47] Jiang CH, Zhou Y, Honma I, Kudo T, Zhou HS., J. Power Sources 2007;166:514–8.
[48] W.J. Weydanz, M.W. Mehrens, R.A. Huggins, J. Power Sources 81–82
(1999) 237–242.
[49] D. Peramunge, K.M. Abhamm, J. Electrochem. Soc. 145 (1998)
2609–2615.
[50] Z.P. Guo, J.Z. Wang, H.K. Liu, S.X. Dou, J. Power Sources 146 (2005)
448–451.
[51] C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, et al., J. Electrochem. Soc. 148 (2001) A102–A104.
[52] K.C. Hsiao, S.C. Liao, J.M. Chen, Electrochim. Acta 53 (2008) 7742-7747.
[53] M. Venkateswarlu, C.H. Chen, J.S. Do, C.W. Lin, T.C. Chou, B.J. Hwang, J. Power Sources 146 (2005) 204-208.
[54] Orisini, Francois, Dolle, Mickael and Tarascon, Jean-Marie, “Impedance Study of the Li/Electrolyte interface upon Cycling”, Solid State Ionics, 2000, 135, 213-221.
[55] 戴瑞豐,”以電沉積法製備氧化鈷薄膜陽極及其在鋰二次電池中之充放電性質 ”,東海大學化學工程系碩士論文, 2004