研究生: |
王常殷 |
---|---|
論文名稱: |
以啟發式演算法求解多派車中心之CY貨櫃運輸問題 Heuristic Algorithms for Multi-Depot Container Yard Transportation Problem |
指導教授: | 林則孟 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 多目標 、基因演算法 、禁忌演算法 、車輛途程問題 |
外文關鍵詞: | NSGA II |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在實務上,CY貨櫃運輸是利用貨櫃車以整櫃式的方式,把貨櫃往來運送於貨主倉庫與貨櫃集散站之間。近年由於客製化服務興起,加上台北港建設完成,降低北部貨櫃從高雄港進出口的需求,貨櫃運輸的模式在島內逐漸由長程的南北轉運,轉變成短程的CY貨櫃運輸。然而,CY貨櫃運輸的貨櫃車在行駛路徑規劃上複雜,還必須因應不同的需求,提供客製化的服務。現行的貨櫃車派遣是以人力為主,但隨著CY貨櫃運輸的需求上升,再加上其運輸路徑的複雜,已成為一個棘手的問題。
本研究把CY貨櫃運輸模式建構為多場站且考量時窗限制的多旅行銷售員問題(Multi-Depot m-TSPTW)。在過去文獻中,主要是以貨櫃車總空車行駛時間最小化為目標進行求解,本研究考量了實務上的狀況,加入了最小化駕駛工作差異的目標,欲減少駕駛之間的工作負荷差異。為求解此雙目標問題,本研究先使用文獻上常用的禁忌演算法與基因演算法,求解以總空車行駛時間最小化為目標的CY貨櫃運輸問題,以期能從這兩種啟發式演算法當中,選出適合實務的貨櫃車路徑規劃演算法。根據上述兩種演算法的比較結果,本研究採用以基因演算法為架構的NSGAII發展多目標啟發式演算法,求解最小化總空車行駛時間與最小化駕駛工作差異的雙目標問題。最後再利用實務上的資料,分析此演算法在不同資料量下的求解情形。
分析結果發現,本研究發展的多目標啟發式演算法在滿足時窗限制、駕駛工時限制……等條件下,隨著資料數量的增加,演算法的求解情形依然穩定,足證此演算法能夠求解雙目標的CY貨櫃運輸問題,並適用於各種不同規模的問題。
1. 王進國,“陸地貨櫃運輸業e化探討”,政治大學經營管理研究所,碩士論文,2002。
2. 朱文正,“考量旅行時間可靠度之車輛途程問題-螞蟻族群演算法之應用”,交通大學運輸研究所,碩士論文,2003。
3. 周韻佳,“具時窗限制題送貨問題之研究”,交通大學運科技與管理研究所,碩士論文,2007。
4. 陳百傑,“以啟發式演算法求解時窗限制車輛途程問題”,中原大學工業工程研究所,碩士論文,2002。
5. 張時豪,“貨櫃陸地轉運問題之演算法發展”,元智大學資訊管理研究所,碩士論文,2005。
6. 謝國倫,“基因演算法應用於捷運轉乘公車區位路徑問題之研究”,淡江大學運輸管理研究所,碩士論文,2000。
7. Chung, K. H., Ko, C. S., Shin, J. Y., Hwang, H. and Kim, K. H., “ Development of mathematical models for the container road transportation in Korean trucking industries”, Computers & Industrial Engineering, Vol. 53., pp.252-262., 2007.
8. Deb, K., “Multi-Objective Optimization using Evolutionary Algorithms”, Wiley-Interscience, 2001.
9. Deb, K., Member, A., Pratap, A., Agarwal, S. and Meyarivan, T., “ A Fast and Elitist Multiobjective Genetic Algorithm”, IEEE Transaction on Evolutionary Computation, Vol. 6, No. 2, pp.182-197, 2002.
10. Fonseca, C.M. and Fleming, P. J., “Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization”, In Forrest, S., editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pp.416-423, 1993.
11. Gen, M. and Cheng, R., “Genetic Algorithms & Engineering Design”, Wiley-Interscience, 1997.
12. Gendreau, M. and Montrdal, U. D., “Tabu Search Heuristics for the Vehicle Routing Problem with Time Windows”, INFORMS, Vol.10, No. 2, pp.211-237, 2002.
13. Holland, J., “Adaptation in Natural and Artificial Systems”, University of Michigan Press, 1975.
14. Horn, J., Nafploitis, N. and Goldberg, D. E., “A niched Pareto genetic algorithm for multiobjective optimization,” Proceedings of the First IEEE Conference on Evolutionary Computation, pp.82–87, 1994.
15. Jozefowiez, N., Semet, F. and Talbi, E., “Target aiming Pareto search and its application to the vehicle routing problem with route balancing”, Journal of Heuristics, pp. 455-469, 2007.
16. Jozefowiez, N., “Multi-objective vehicle routing problems”, European Journal Of Operational Research, pp. 293-309, 2008.
17. Jula, H., Dessouky, M., Ioannou, P. and Chassiakos, A., “Container movement by trucks in metropolitan networks : modeling and optimization”, Transportation Research Part E., Vol. 41., pp. 235-259, 2005.
18. Knowles, J. and Corne, D., “The Pareto Archived Evolution Strategy : A New Baseline Algorithm for Pareto Multiobjective Optimisation”, Proceedings of the 1999 Congress on Evolutionary Computation, pp.98-105, 1999.
19. Moura, A., Engeneering, C. and Quental, R.A., “A Multi-Objective Genetic Algorithm for the Vehicle Routing with Time Windows and Loading Problem”, Intelligent Decision Support , pp.187-201, 2008.
20. Ombuki, B., Ross, B. J. and Hanshar, F., “Multi-Objective Genetic Algorithms for Vehicle Routing Problem with Time Windows”, Applied Intelligence, pp. 17-30, 2006.
21. Parragh, S. N., Doerner, K. F. and Hartl, R. F., “A survey on pickup and delivery problems Part I : Transportation between customers and depot”, Journal für Betriebswirtschaft , pp.21-51, 2008.
22. Parragh, S. N., Doerner, K. F. and Hartl, R. F., “A survey on pickup and delivery problems Part II : Transportation between pickup and delivery locations”, Journal für Betriebswirtschaft , pp.81-117, 2008.
23. Srinivas, N. and Deb, K., “Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms”, Evolutionary Computation, pp.221-248, 1995.
24. Stahlbock, R. and Voß, S., “Vehicle Routing Problems and Container Terminal Operations – An Update of Research”, The Vehicle Routing Problem, pp. 552-589, 2008.
25. Tan, K. C., Chew, Y. H. and Lee, L. H., “A Hybrid Multiobjective Evolutionary Algorithm for Solving Vehicle Routing Problem”, European Journal of Operational Research, pp.115-151, 2006.
26. Willard, JAG., “Vehicle routing using R-optimal Tabu search”, MSc Thesis. London: Management School, Imperial College, 1989.
27. Xu, H., Fan, W., Wei, T. and Yu, L., “An Or-Opt NSGA-II Algorithm for Multi-Objective Vehicle Routing Problem with Time Windows”, 4th IEEE Conference on Automation Science and Engineering, pp.309-314, 2008.
28. Zhang, R., Young, W. and Moon, I., “A reactive tabu search algorithm for the multi-depot container truck transportation problem”, Transportation Research Part E., Vol. 45, No. 6, pp.904-914, 2009.
29. Zitzler, E. and Deb, K., “Comparison of Multiobjective Evolutionary Algorithms : Empirical Results”, Evolutionary Computation, pp.173-195, 1994.
30. Zitzler, E., “Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications”, Ph.D. thesis, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland, 1999.