簡易檢索 / 詳目顯示

研究生: 蔡政倫
Tsai, Cheng Lun
論文名稱: 二維材料MoS2、WS2及石墨烯結合塊材半導體之太陽能電池研製
The Study of Solar Cells Based on 2D Materials MoS2, WS2 and Graphene with Bulk Semiconductors
指導教授: 黃金花
Huang, Jin Hua
口試委員: 黃倉秀
黃柏瑋
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 96
中文關鍵詞: 二維材料太陽能電池過渡金屬二硫屬化合物石墨烯
外文關鍵詞: 2D materials, solar cells, TMDCs, graphene
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯具有許多適合光伏元件應用的特性,如:高光穿透性、機械可撓性、低阻抗及高載子遷移率。理論上,石墨烯因為有半金屬的特性,可以做為主動層與任何具有中等載子密度的半導體產生蕭基接面形成太陽能電池元件。
    單層TMDs材料則是另一種具極高光電發展潛力的二維材料。與石墨烯不同,它們本身為半導體,且具有直接能隙,有高光電轉換效率的潛力。將單層TMDs材料與塊材基板結合製作光伏元件,可以有效彌補單層材料吸光區域有限的缺點,大幅提升其吸光能力並減少二維材料用量,增加量產可能性。
    本研究分成兩個部份:轉移以化學氣相沉積法成長的單層MoS¬2、WS2與p型矽基板結合,形成異質接面太陽能電池;以及轉移同樣為化學氣相沉積法成長的石墨烯與n型砷化鎵結合,形成蕭基接面太陽能電池。
    在矽基/TMDs材料元件部分,我們研究適合的背電極材料與上電極結構,找出具有最佳表現的組合。此研究中,MoS2及WS2與矽晶結合之太陽能電池光電轉換效率最高分別達4.23及2.08 %。
    砷化鎵與石墨烯結合元件部分,我們分別比較純砷化鎵基板與以分子束磊晶技術在砷化鎵基板上磊晶成長砷化鎵薄膜並調變薄膜之摻雜濃度製成之元件。此研究中,石墨烯與砷化鎵結合之太陽能電池光電轉換效率最高達2.08 %。


    Graphene has shown superior properties suitable for photovoltaic devices, including high optical transmittance, high mechanical flexibility, low resistivity, and high carrier mobility. In theory, with the property of semi-metal, graphene is able to form Schottky junction with any semiconductor having moderate carrier density.
    Monolayer Transition Metal Dichalcogenides (TMDs) are also promising two-dimensional materials in optoelectronic devices. Monolayer TMDs are semiconductors with direct band gap which is beneficial to optoelectronic usage. Combination of monolayer TMDs and bulk materials potentially can overcome the limited absorption problem of 2D materials and difficulties in mass production.
    This work consists of two studies: Transferring the chemical vapor deposition (CVD) grown TMDs onto p-type Si substrates to produce heterojunction p-n solar cells, and transferring graphene which is also grown by CVD onto n-type GaAs to produce Schottky junction solar cells.
    In TMDs heterojunction p-n solar cells, various back electrode materials and top electrode structures were tested. The best power conversion efficiencies obtained for the MoS2 and WS2 heterojunction solar cells are 4.23 and 2.08 %, respectively.
    In grapheme/GaAs Schottky junction solar cells, we used either the GaAs substrate or GaAs thin films with various doping concentrations grown by molecular beam epitaxy. The best power conversion efficiency of grapheme/GaAs Schottky junction solar cells is 2.08 %.

    摘要 I Abstract II 誌謝 III 總目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 文獻回顧 4 2-1 二維材料的製作與性質 4 2-1-1 二維材料的成長 5 2-1-2 二維材料的成分與結構 9 2-1-3 TMDs材料的直接能隙 12 2-1-4 二維材料的光電性質分析 14 2-2 太陽能電池 21 2-2-1 工作原理 21 2-2-2 能量轉換效率與電壓電流特性 22 2-2-3 等效電路模型 25 2-3 矽與砷化鎵之光電性質 28 2-3-1 矽 28 2-3-2 砷化鎵 30 2-4 二維材料光伏元件 34 2-4-1 TMDs材料光伏元件 34 2-4-2 石墨烯之光伏元件 37 2-5 歐姆接觸及比接觸電阻 38 第三章 儀器介紹與實驗步驟 40 3-1 電子束真空蒸鍍系統 ( E-gun Evaporator ) 40 3-2 電阻式真空蒸鍍系統 ( Thermal Coater ) 41 3-3 旋轉塗佈機 ( Spin Coater ) 42 3-4 快速退火爐管 ( Rapid Thermal Annealling ) 42 3-5 反應式離子蝕刻機 ( Reactive-ion Etching ) 43 3-6 Cox-Strack量測用試片製作流程 44 3-6-1 試片清洗 45 3-6-2 背面待測金屬結構鍍製/快速退火 46 3-6-3 正面待測金屬結構圓點圖形鍍製/快速退火 46 3-7 單層TMDs材料成長流程 47 3-7-1 單層MoS2成長 47 3-7-2 單層WS2成長 47 3-8 TMDs / p型矽異質接合太陽能電池元件製作流程 48 3-8-1 試片清洗 49 3-8-2 背電極製作 49 3-8-3 轉移TMDs材料 49 3-8-4 上電極製作 50 3-9 石墨烯成長流程 50 3-10 石墨烯 / n型GaAs太陽能電池元件製作流程 51 3-10-1 試片清洗 60 3-10-2 背電極製作 54 3-10-3 元件正面結構製作 54 3-10-4 石墨烯的轉移 55 3-11 分析儀器 57 3-11-1 光學顯微探針量測系統 57 3-11-2 太陽模擬光量測系統 (Solar Simulator) 57 3-11-3 入射光子轉換效率 ( Incident Photon-Electron Conversion Efficiency,IPCE ) 58 3-11-4 拉曼光譜分析 ( Raman Spectrum ) 59 3-11-5 光致螢光光譜 ( Photoluminescence Spectrum ) 59 3-11-6 UV-VIS吸收光譜分析 ( Absorbance spectrum ) 60 第四章 結果與討論 61 4-1 TMDs材料與低摻雜p型矽異質接合太陽能電池 61 4-1-1 背電極金屬與低摻雜p型矽基板接觸分析 61 4-1-2 TMDs材料光電性質分析 68 4-1-3 上電極結構對單層MoS2 / pSi元件效率影響探討 73 4-1-4 上電極結構對單層WS2 / pSi元件效率影響探討 76 4-2 石墨烯與n型砷化鎵之蕭基接面太陽能電池元件 79 4-2-1 石墨烯之拉曼光譜分析 79 4-2-2 轉移用之高分子聚合物薄膜穿透率分析 80 4-2-3 不同摻雜濃度的n型砷化鎵對元件效率的影響 82 第五章 結論 87 第六章 未來發展 91 第七章 參考文獻 92

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, Oct 22 2004.
    [2] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature Nanotechnology, vol. 7, pp. 699-712, Nov 2012.
    [3] Y. Q. Wu, D. B. Farmer, F. N. Xia, and P. Avouris, "Graphene Electronics: Materials, Devices, and Circuits," Proceedings of the Ieee, vol. 101, pp. 1620-1637, Jul 2013.
    [4] S. K. Behura, P. Mahala, A. Ray, I. Mukhopadhyay, and O. Jani, "Theoretical simulation of photovoltaic response of graphene-on-semiconductors," Applied Physics a-Materials Science & Processing, vol. 111, pp. 1159-1163, Jun 2013.
    [5] A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures," Nature, vol. 499, pp. 419-425, Jul 25 2013.
    [6] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nature Nanotechnology, vol. 6, pp. 147-150, Mar 2011.
    [7] Y. J. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, "Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate," Small, vol. 8, pp. 966-971, Apr 10 2012.
    [8] Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, et al., "Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition," Advanced Materials, vol. 24, pp. 2320-2325, May 2 2012.
    [9] Y. C. Lin, W. J. Zhang, J. K. Huang, K. K. Liu, Y. H. Lee, C. T. Liang, et al., "Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization," Nanoscale, vol. 4, pp. 6637-6641, 2012.
    [10] H. R. Gutierrez, N. Perea-Lopez, A. L. Elias, A. Berkdemir, B. Wang, R. Lv, et al., "Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers," Nano Letters, vol. 13, pp. 3447-3454, Aug 2013.
    [11] C. X. Cong, J. Z. Shang, X. Wu, B. C. Cao, N. Peimyoo, C. Qiu, et al., "Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition," Advanced Optical Materials, vol. 2, pp. 131-136, Feb 2014.
    [12] Q. K. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, Sep 15 2008.
    [13] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, et al., "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, pp. 1312-1314, Jun 5 2009.
    [14] A. Kuc, "Low-dimensional transition-metal dichalcogenides," Chemical Modelling, vol. 11, 2014.
    [15] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," Nature Chemistry, vol. 5, pp. 263-275, Apr 2013.
    [16] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, Mar 2007.
    [17] A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, et al., "Emerging Photoluminescence in Monolayer MoS2," Nano Letters, vol. 10, pp. 1271-1275, Apr 2010.
    [18] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous Lattice Vibrations of Single- and Few-Layer MoS2," Acs Nano, vol. 4, pp. 2695-2700, May 2010.
    [19] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically Thin MoS2: A New Direct-Gap Semiconductor," Physical Review Letters, vol. 105, Sep 24 2010.
    [20] A. Castellanos-Gomez, J. Quereda, H. P. van der Meulen, N. Agrait, and G. Rubio-Bollinger, "Spatially resolved optical absorption spectroscopy of single- and few-layer MoS2 by hyperspectral imaging," Nanotechnology, vol. 27, Mar 18 2016.
    [21] M. Bernardi, M. Palummo, and J. C. Grossman, "Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials," Nano Letters, vol. 13, pp. 3664-3670, Aug 2013.
    [22] A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C. I. Chia, et al., "Identification of individual and few layers of WS2 using Raman Spectroscopy," Scientific Reports, vol. 3, Apr 30 2013.
    [23] W. J. Zhao, Z. Ghorannevis, L. Q. Chu, M. L. Toh, C. Kloc, P. H. Tan, et al., "Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2," Acs Nano, vol. 7, pp. 791-797, Jan 2013.
    [24] X. M. Li, H. W. Zhu, K. L. Wang, A. Y. Cao, J. Q. Wei, C. Y. Li, et al., "Graphene-On-Silicon Schottky Junction Solar Cells," Advanced Materials, vol. 22, pp. 2743-+, Jul 6 2010.
    [25] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., "Raman spectrum of graphene and graphene layers," Physical Review Letters, vol. 97, Nov 3 2006.
    [26] 蔡進譯, "超高效率太陽能電池-從愛因斯坦的光電效應談起," 物理雙月刊, pp. 701-719, 2005.
    [27] Available: http://pveducation.org/pvcdrom/appendices/standard-solar-spectra.
    [28] S.Priambodo, D. Hartanto,, Solar Cell Technology. INTECH Open Access Publisher."
    [29] Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code. Available: http://www.ni.com/white-paper/7230/en/.
    [30] Si basic Electrical properties . Available: http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html#Hall..
    [31] GaAs Zinc blende structure. Available: http://www.chem.shef.ac.uk/chm131-2001/cha01tal/compoundsemiconductors.html.
    [32] Silicon diamond structure. Available: http://www.chem.shef.ac.uk/chm131-2001/cha01tal/elementalsemiconductors.html.
    [33] GaAs band structure. Available: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/bandstr.html.
    [34] Silicon band structure. Available: http://www.ioffe.ru/SVA/NSM/Semicond/Si/bandstr.html.
    [35] Drift velocity versus electric field in Silicon and GaAs. Available: http://www.globalsino.com/micro/1/1micro9939.html.
    [36] Chapter 12: Visible-spectrum LEDs. Available from: http://ebooks.cambridge.org/chapter.jsf?bid=CBO9780511790546&cid=CBO9780511790546A100.
    [37] GaAs basic parameters at 300K. Available: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/basic.html.
    [38] M. Shanmugam, T. Bansal, C. A. Durcan, and B. Yu, "Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell," Applied Physics Letters, vol. 100, Apr 9 2012.
    [39] M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, et al., "Monolayer MoS2 Heterojunction Solar Cells," Acs Nano, vol. 8, pp. 8317-8322, Aug 2014.
    [40] M. Shanmugam, T. Bansal, C. A. Durcan, and B. Yu, "Schottky-barrier solar cell based on layered semiconductor tungsten disulfide nanofilm," Applied Physics Letters, vol. 101, Dec 24 2012.
    [41] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, et al., "Photocurrent generation with two-dimensional van der Waals semiconductors," Chemical Society Reviews, vol. 44, pp. 3691-3718, 2015.
    [42] N. J. Huo, S. X. Yang, Z. M. Wei, S. S. Li, J. B. Xia, and J. B. Li, "Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS2 Nanoflakes," Scientific Reports, vol. 4, Jun 9 2014.
    [43] X. C. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, et al., "High Efficiency Graphene Solar Cells by Chemical Doping," Nano Letters, vol. 12, pp. 2745-2750, Jun 2012.
    [44] W. J. Jie, F. G. Zheng, and J. H. Hao, "Graphene/gallium arsenide-based Schottky junction solar cells," Applied Physics Letters, vol. 103, Dec 2 2013.
    [45] C. W. Wilmsen, Physics and Chemistry of III-V Compound Semiconductor Interfaces: Springer US, 1985.
    [46] D. K. Schroder and D. L. Meier, "Solar-Cell Contact Resistance - a Review," Ieee Transactions on Electron Devices, vol. 31, pp. 637-647, 1984.
    [47] C. M. Polley, W. R. Clarke, and M. Y. Simmons, "Comparison of nickel silicide and aluminium ohmic contact metallizations for low-temperature quantum transport measurements," Nanoscale Research Letters, vol. 6, Oct 3 2011.
    [48] D. Ovchinnikov, A. Allain, Y. S. Huang, D. Dumcenco, and A. Kis, "Electrical Transport Properties of Single-Layer WS2," Acs Nano, vol. 8, pp. 8174-8181, Aug 2014.
    [49] 林敬倫, "二維石墨烯與矽塊材及砷化鎵薄膜蕭基接面太陽能電池研製," 2015.
    [50] T. Takahagi, I. Nagai, A. Ishitani, H. Kuroda, and Y. Nagasawa, "The Formation of Hydrogen Passivated Silicon Single-Crystal Surfaces Using Ultraviolet Cleaning and Hf Etching," Journal of Applied Physics, vol. 64, pp. 3516-3521, Oct 1 1988.
    [51] L. Z. Hao, W. Gao, Y. J. Liu, Z. D. Han, Q. Z. Xue, W. Y. Guo, et al., "High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells," Nanoscale, vol. 7, pp. 8304-8308, 2015.
    [52] Y. Li, C. Y. Xu, J. Y. Wang, and L. Zhen, "Photodiode-Like Behavior and Excellent Photoresponse of Vertical Si/Monolayer MoS2 Heterostructures," Scientific Reports, vol. 4, Nov 26 2014.
    [53] X. Q. Li, W. C. Chen, S. J. Zhang, Z. Q. Wu, P. Wang, Z. J. Xu, et al., "18.5% efficient graphene/GaAs van der Waals heterostructure solar cell," Nano Energy, vol. 16, pp. 310-319, Sep 2015.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE