簡易檢索 / 詳目顯示

研究生: 王義翔
Wang, Yi-Hsiang
論文名稱: 單核細胞和乳腺癌細胞之間的串息藉由細胞激素CXCL7分子促進乳腺癌進展
Crosstalk Between Monocytes and Breast Cancer Cells to Promote Breast Cancer Progression via CXCL7 Mediated Signaling Pathways
指導教授: 王陸海
Wang, Lu-Hai
王雯靜
Wang, Wen-Ching
口試委員: 徐欣伶
Hsu, Hsin-Ling
黃麗蓉
Huang, Lee-Jung
林愷悌
Lin, Kai-Ti
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 151
中文關鍵詞: 乳腺癌單核細胞癌細胞轉移腫瘤微環境
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 免疫細胞和發炎性因子是腫瘤微環境中促進乳腺癌進展的重要組成部分。為探討腫瘤微環境中的關鍵分子,我們將低侵入性和高侵入性的MDA-MB-231乳腺癌細胞與人類單核細胞THP-1細胞共同培養,並通過細胞蛋白因子陣列鑑定出差異分泌的細胞因子。我們發現,在共培養條件下,乳腺癌細胞分泌的CSF1誘導了單核細胞中CXCL7的表達,從而促進ROCK2蛋白於單核細胞,使其細胞分化成M2型巨噬細胞,並以FAK與MMP13蛋白增強乳腺癌細胞的轉移和侵襲能力。在異種移植小鼠模型中,CXCL7抗體可以顯著降低腫瘤的生長和遠處轉移。總體而言,我們的研究揭示了,由腫瘤促使單核細胞分泌的新型關鍵分子CXCL7,可改變腫瘤微環境,促進M2巨噬細胞分化和癌細胞轉移、侵襲,均有助於促進乳腺癌的進展和轉移。


    Immune cells and inflammatory cytokines are essential components in the tumor microenvironment to promote breast cancer progression. To identify key players in the tumor microenvironment, we applied low and high invasive MDA-MB-231 breast cancer cell lines to co-culture with human monocyte THP-1 cells, and identified differentially secreted cytokines through cytokine array. We found that under co-culturing condition, CSF1, which was secreted by breast cancer cells, induced expression of CXCL7 from THP-1 monocytes, resulting in the promotion of their differentiation into M2-type macrophages by ROCK2 activation and enhanced migration and invasion ability of breast cancer cells via FAK and MMP13. Blocking CXCL7 by antibodies significantly reduced tumor growth and distant metastasis in the xenograft mouse model. Overall, our study unveils a novel key player, CXCL7, secreted by tumor infiltrating monocytes, to alter the tumor microenvironment in favor of M2 macrophage differentiation and cancer cell migration/invasion, both contributing to the promotion of breast cancer progression and metastasis.

    摘要 3 Abstract 4 誌謝辭 5 Part I 12 Introduction 13 Materials and Methods 19 Cell culture 19 Co-culture system and cytokine array 20 Enzyme-Linked Immuno Sorbent Assay 20 Migration and invasion assays 21 Flow Cytometry analysis and macrophage differentiation 21 Macrophage suppression assay 22 Transfection assay 22 Quantitative RT-PCR analysis 23 Western blot analysis 23 In vivo xenograft mouse model studies 24 Immunohistochemistry (IHC) analysis 25 Statistical method 25 Results 26 Identification of CXCL7 cytokine in the co-culturing system of monocytes and invasive breast cancer cells 26 CSF1 produced by breast cancer cells induces CXCL7 secretion by monocytes 31 CXCL7 promotes breast cancer cell migration and invasion, which is correlated with activation of FAK-mediated signaling pathway 35 CXCL7 recruits and modulates monocytes to become M2-like macrophages, which is correlated with increase of ROCK2 40 Inhibition of CXCL7 suppresses tumor growth and reduces the incidence of distant metastases in xenograft breast cancer model 45 Expression of CXCL7 and ROCK2 correlated with breast cancer progression and patients' survival 50 Discussion 56 Reference 61 Part II 67 Abstract 68 Introduction 69 Materials and Methods 73 Cell culture and transfections 73 Cell knockout and mutagenesis 74 Nucleotides and reagents 74 Quantitative real-time PCR 75 H2S measurements (lead sulfide method) 76 Modified biotin switch (S-sulfhydration) assay 77 Nuclear/cytosol fractionation 78 Western blot analysis 78 Transwell cell migration and cell invasion assay 79 Cell proliferation assay 79 GSH/GSSG assay 80 Immunofluorescence 80 Endothelial cell tube formation assay 82 IL-1β detection 82 Mouse orthotopic implantation and tail-vein injection model 83 Immunohistochemistry 84 Retrieving RNA-seq data from The Cancer Genome Atlas 84 Results 86 Expression of CTH was upregulated in bone-metastatic PC cells 86 Increased expression of CTH correlated with progression and poor survival in PC 88 CTH promoted PC cell migration and invasion, but not proliferation 98 Knockdown of CTH suppressed cell invasion through inhibition of NF-κΒ-IL-1β-mediated signaling 107 The H2S-mediated sulfhydration of the NF-κB p65 subunit resulted in increased IL-1β production and enhanced cell invasion 118 Knockdown of CTH suppressed tumor growth and reduced the incidence of paraaortic lymph nodes and bone metastases in the mouse orthotopic implantation model 131 Discussion 140 Contributions 143 Reference 145 List of Figures Part I Figure 1 28 Figure 2 32 Figure 3 37 Figure 4 42 Figure 5 47 Figure 6 52 Figure 7 55 Supplemental table 1 64 Supplemental table 2 65 Supplemental table 3 66

    Part I
    1. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
    2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2019. CA Cancer J Clin, 2019. 69(1): p. 7-34.
    3. Tower, H., M. Ruppert, and K. Britt, The Immune Microenvironment of Breast Cancer Progression. Cancers (Basel), 2019. 11(9).
    4. Medzhitov, R. and C. Janeway, Jr., Innate immunity. N Engl J Med, 2000. 343(5): p. 338-44.
    5. Cassetta, L. and J.W. Pollard, Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov, 2018. 17(12): p. 887-904.
    6. Qiu, S.Q., et al., Tumor-associated macrophages in breast cancer: Innocent bystander or important player? Cancer Treat Rev, 2018. 70: p. 178-189.
    7. Xu, X., et al., M2 macrophage-derived IL6 mediates resistance of breast cancer cells to hedgehog inhibition. Toxicol Appl Pharmacol, 2019. 364: p. 77-82.
    8. Joyce, J.A. and J.W. Pollard, Microenvironmental regulation of metastasis. Nat Rev Cancer, 2009. 9(4): p. 239-52.
    9. Alderton, G.K., Tumour immunology: turning macrophages on, off and on again. Nat Rev Immunol, 2014. 14(3): p. 136-7.
    10. Noy, R. and J.W. Pollard, Tumor-associated macrophages: from mechanisms to therapy. Immunity, 2014. 41(1): p. 49-61.
    11. Franklin, R.A., et al., The cellular and molecular origin of tumor-associated macrophages. Science, 2014. 344(6186): p. 921-5.
    12. Martinez, F.O., et al., Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol, 2006. 177(10): p. 7303-11.
    13. Mosser, D.M. and J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat Rev Immunol, 2008. 8(12): p. 958-69.
    14. Biswas, S.K. and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology, 2010. 11(10): p. 889-896.
    15. Martinez, F.O. and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep, 2014. 6: p. 13.
    16. Zandi, S., et al., ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Rep, 2015. 10(7): p. 1173-86.
    17. Griffith, J.W., C.L. Sokol, and A.D. Luster, Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol, 2014. 32: p. 659-702.
    18. Nagarsheth, N., M.S. Wicha, and W. Zou, Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol, 2017. 17(9): p. 559-572.
    19. Ghasemzadeh, M., et al., The CXCR1/2 ligand NAP-2 promotes directed intravascular leukocyte migration through platelet thrombi. Blood, 2013. 121(22): p. 4555-66.
    20. Grepin, R., et al., The CXCL7/CXCR1/2 Axis Is a Key Driver in the Growth of Clear Cell Renal Cell Carcinoma. Cancer Research, 2014. 74(3): p. 873-883.
    21. Unver, N., et al., CXCL7-induced macrophage infiltration in lung tumor is independent of CXCR2 expression: CXCL7-induced macrophage chemotaxis in LLC tumors. Cytokine, 2015. 75(2): p. 330-7.
    22. Tang, Z., et al., Increased invasion through basement membrane by CXCL7-transfected breast cells. American Journal of Surgery, 2008. 196(5): p. 690-696.
    23. Yu, M., R. Berk, and M.A. Kosir, CXCL7-Mediated Stimulation of Lymphangiogenic Factors VEGF-C, VEGF-D in Human Breast Cancer Cells. J Oncol, 2010. 2010: p. 939407.
    24. Chan, S.H., et al., MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis. Oncogene, 2014. 33(36): p. 4496-507.
    25. Cohen-Hillel, E., et al., CXCL8-induced FAK phosphorylation via CXCR1 and CXCR2: cytoskeleton- and integrin-related mechanisms converge with FAK regulatory pathways in a receptor-specific manner. Cytokine, 2006. 33(1): p. 1-16.
    26. Tzeng, H.E., et al., CCN3 increases cell motility and MMP-13 expression in human chondrosarcoma through integrin-dependent pathway. J Cell Physiol, 2011. 226(12): p. 3181-9.
    27. Honing, H., et al., RhoA activation promotes transendothelial migration of monocytes via ROCK. J Leukoc Biol, 2004. 75(3): p. 523-8.
    28. Leek, R.D., et al., Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res, 1996. 56(20): p. 4625-9.
    29. Mantovani, A., et al., The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 2004. 25(12): p. 677-686.
    30. Williams, C.B., E.S. Yeh, and A.C. Soloff, Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer, 2016. 2.
    31. Jones, C.V. and S.D. Ricardo, Macrophages and CSF-1: implications for development and beyond. Organogenesis, 2013. 9(4): p. 249-60.
    32. Lin, E.Y., et al., The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia, 2002. 7(2): p. 147-62.
    33. Strachan, D.C., et al., CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8(+) T cells. Oncoimmunology, 2013. 2(12): p. e26968.
    Part II
    1. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65: 5 – 29
    2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65: 87 – 108
    3. Ye L, Kynaston HG, Jiang WG (2007) Bone metastasis in prostate cancer: molecular and cellular mechanisms (Review). Int J Mol Med 20: 103 – 111
    4. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322: 587 – 590
    5. Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R et al (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109: 1259 – 1268
    6. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Modis K, Panopoulos P, Asimakopoulou A, Gero D, Sharina I, Martin E et al (2012) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci USA 109: 9161 – 9166
    7. Nicholson CK, Calvert JW (2010) Hydrogen sulfide and ischemia-reperfusion injury. Pharmacol Res 62: 289 – 297
    8. Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulfide is an endogenous modulator of leukocytemediated inflammation. FASEB J 20: 2118 – 2120
    9. Paul BD, Snyder SH (2012) H(2)S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13: 499 – 507
    10. Chen X, Jhee KH, Kruger WD (2004) Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279: 52082 – 52086
    11. Kabil O, Vitvitsky V, Xie P, Banerjee R (2011) The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal 15: 363 – 372
    12. Cooper AJ (1983) Biochemistry of sulfur-containing amino acids. Annu Rev Biochem 52: 187 – 222
    13. Meister A, Fraser PE, Tice SV (1954) Enzymatic desulfuration of betamercaptopyruvate to pyruvate. J Biol Chem 206: 561 – 575
    14. Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009) Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146: 623 – 626
    15. Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11: 703 – 714
    16. Wu D, Si W, Wang M, Lv S, Ji A, Li Y (2015) Hydrogen sulfide in cancer: friend or foe? Nitric Oxide 50: 38 – 45
    17. Turbat-Herrera EA, Kilpatrick MJ, Chen J, Meram AT, Cotelingam J, Ghali G, Kevil CG, Coppola D, Shackelford RE (2018) Cystathione betasynthase is increased in thyroid malignancies. Anticancer Res 38: 6085 – 6090
    18. Bhattacharyya S, Saha S, Giri K, Lanza IR, Nair KS, Jennings NB, Rodriguez- Aguayo C, Lopez-Berestein G, Basal E, Weaver AL et al (2013) Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS ONE 8: e79167
    19. Untereiner AA, Pavlidou A, Druzhyna N, Papapetropoulos A, Hellmich MR, Szabo C (2018) Drug resistance induces the upregulation of H2Sproducing enzymes in HCT116 colon cancer cells. Biochem Pharmacol 149: 174 – 185
    20. Phillips CM, Zatarain JR, Nicholls ME, Porter C, Widen SG, Thanki K, Johnson P, Jawad MU, Moyer MP, Randall JW et al (2017) Upregulation of cystathionine-beta-synthase in colonic epithelia reprograms metabolism and promotes carcinogenesis. Cancer Res 77: 5741 – 5754
    21. Wang L, Shi H, Zhang X, Zhang X, Liu Y, Kang W, Shi X, Wang T (2019) I157172, a novel inhibitor of cystathionine gamma-lyase, inhibits growth and migration of breast cancer cells via SIRT1-mediated deacetylation of STAT3. Oncol Rep 41: 427 – 436
    22. Jurkowska H, Wrobel M (2018) Cystathionine promotes the proliferation of human astrocytoma U373 cells. Anticancer Res 38: 3501 – 3505
    23. Augsburger F, Szabo C (2018) Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway in cancer cells. Pharmacol Res https://doi.org/10.1016/j.phrs.2018.11.034
    24. Orlowski RZ, Baldwin AS Jr (2002) NF-kappaB as a therapeutic target in cancer. Trends Mol Med 8: 385 – 389
    25. Domingo-Domenech J, Oliva C, Rovira A, Codony-Servat J, Bosch M, Filella X, Montagut C, Tapia M, Campas C, Dang L et al (2006) Interleukin 6, a nuclear factor-kappaB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-kappaB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin Cancer Res 12: 5578 – 5586
    26. Domingo-Domenech J, Mellado B, Ferrer B, Truan D, Codony-Servat J, Sauleda S, Alcover J, Campo E, Gascon P, Rovira A et al (2005) Activation of nuclear factor-kappaB in human prostate carcinogenesis and association to biochemical relapse. Br J Cancer 93: 1285 – 1294
    27. Ross JS, Kallakury BV, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P, Gray K, Stringer B (2004) Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adenocarcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. Clin Cancer Res 10: 2466 – 2472
    28. Lessard L, Karakiewicz PI, Bellon-Gagnon P, Alam-Fahmy M, Ismail HA, Mes-Masson AM, Saad F (2006) Nuclear localization of nuclear factorkappaB p65 in primary prostate tumors is highly predictive of pelvic lymph node metastases. Clin Cancer Res 12: 5741 – 5745
    29. Ismail HA, Lessard L, Mes-Masson AM, Saad F (2004) Expression of NFkappaB in prostate cancer lymph node metastases. Prostate 58: 308 – 313
    30. Jin R, Yi Y, Yull FE, Blackwell TS, Clark PE, Koyama T, Smith JA Jr, Matusik RJ (2014) NF-kappaB gene signature predicts prostate cancer progression. Cancer Res 74: 2763 – 2772
    31. Liu Q, Russell MR, Shahriari K, Jernigan DL, Lioni MI, Garcia FU, Fatatis A (2013) Interleukin-1beta promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features. Cancer Res 73: 3297 – 3305
    32. Schulze J, Weber K, Baranowsky A, Streichert T, Lange T, Spiro AS, Albers J, Seitz S, Zustin J, Amling M et al (2012) p65-Dependent production of interleukin-1beta by osteolytic prostate cancer cells causes an induction of chemokine expression in osteoblasts. Cancer Lett 317: 106 – 113
    33. Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12: 86
    34. Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. Mol Cell 45: 13 – 24
    35. Lin KT, Gong J, Li CF, Jang TH, Chen WL, Chen HJ, Wang LH (2012) Vav3- rac1 signaling regulates prostate cancer metastasis with elevated Vav3 expression correlating with prostate cancer progression and posttreatment recurrence. Cancer Res 72: 3000 – 3009
    36. Guo H, Gai JW, Wang Y, Jin HF, Du JB, Jin J (2012) Characterization of hydrogen sulfide and its synthases, cystathionine beta-synthase and cystathionine gamma-lyase, in human prostatic tissue and cells. Urology 79: 483 e1 – 483 e5
    37. Zhu W, Lin A, Banerjee R (2008) Kinetic properties of polymorphic variants and pathogenic mutants in human cystathionine gamma-lyase. Biochemistry 47: 6226 – 6232
    38. Hiscott J, Marois J, Garoufalis J, D’Addario M, Roulston A, Kwan I, Pepin N, Lacoste J, Nguyen H, Bensi G et al (1993) Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol Cell Biol 13: 6231 – 6240
    39. Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14: 649 – 683
    40. Mengshol JA, Vincenti MP, Coon CI, Barchowsky A, Brinckerhoff CE (2000) Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum 43: 801 – 811
    41. Jung YD, Liu W, Reinmuth N, Ahmad SA, Fan F, Gallick GE, Ellis LM (2001) Vascular endothelial growth factor is upregulated by interleukin- 1 beta in human vascular smooth muscle cells via the P38 mitogenactivated protein kinase pathway. Angiogenesis 4: 155 – 162
    42. Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK (2008) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117: 2351 – 2360
    43. Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21: 274 – 281
    44. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R et al (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106: 21972 – 21977
    45. Szabo C, Coletta C, Chao C, Modis K, Szczesny B, Papapetropoulos A, Hellmich MR (2013) Tumor-derived hydrogen sulfide, produced by cystathionine-beta-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci USA 110: 12474 – 12479
    46. Lee ZW, Deng LW (2015) Role of H2S donors in cancer biology. Handb Exp Pharmacol 230: 243 – 265
    47. Li L, Rose P, Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51: 169 – 187
    48. Sun Z, Andersson R (2002) NF-kappaB activation and inhibition: a review. Shock 18: 99 – 106
    49. Zhang Q, Lenardo MJ, Baltimore D (2017) 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell 168: 37 – 57
    50. Napetschnig J, Wu H (2013) Molecular basis of NF-kappaB signaling. Annu Rev Biophys 42: 443 – 468
    51. Carmi Y, Dotan S, Rider P, Kaplanov I, White MR, Baron R, Abutbul S, Huszar M, Dinarello CA, Apte RN et al (2013) The role of IL-1beta in the early tumor cell-induced angiogenic response. J Immunol 190: 3500 – 3509
    52. Cai T, Nesi G, Tinacci G, Giubilei G, Gavazzi A, Mondaini N, Zini E, Bartoletti R (2011) Clinical importance of lymph node density in predicting outcome of prostate cancer patients. J Surg Res 167: 267 – 272
    53. Datta K, Muders M, Zhang H, Tindall DJ (2010) Mechanism of lymph node metastasis in prostate cancer. Future Oncol 6: 823 – 836
    54. Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, Longchamp A, Trevino-Villarreal JH, Mejia P, Ozaki CK et al (2015) Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160: 132 – 144
    55. Sachdev P, Zeng L, Wang LH (2002) Distinct role of phosphatidylinositol 3-kinase and Rho family GTPases in Vav3-induced cell transformation, cell motility, and morphological changes. J Biol Chem 277: 17638 – 17648
    56. Lin KT, Yeh YM, Chuang CM, Yang SY, Chang JW, Sun SP, Wang YS, Chao KC, Wang LH (2015) Glucocorticoids mediate induction of microRNA-708 to suppress ovarian cancer metastasis through targeting Rap1B. Nat Commun 6: 5917
    57. Stephenson RA, Dinney CP, Gohji K, Ordonez NG, Killion JJ, Fidler IJ (1992) Metastatic model for human prostate cancer using orthotopic implantation in nude mice. J Natl Cancer Inst 84: 951 – 957

    QR CODE