研究生: |
黃竣鴻 Huang, Chun-Hung |
---|---|
論文名稱: |
以鉑、碳對二氧化鈦改質之可見光降解氮氧化合物研究及鑑定分析 Visible Light Photocatalytic Degradation of NOx on PtOxor Carbon-modified TiO2 and the Relative Characterization |
指導教授: |
王奕凱
Wang, I-Kai |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 二氧化鈦 、可見光光觸媒 、鉑 、碳 、溶膠凝膠法 、含浸法 |
外文關鍵詞: | Titanium dioxide, Visible-light-responsive photocatalyst, Platinum, Carbon, Sol-gel method, Impregnation method |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了提高光觸媒在太陽光有效的利用,本研究以二氧化鈦(TiO2)為主體進行鉑、碳的改質,將應用拓展至可見光下的氮氧化合物去除(De-NOx);並利用多項檢測鑑定改質後的樣品性質,最後提出其可能光催化機制。研究分為兩部份,ㄧ部份為鉑的改質,藉由溶膠凝膠法或是含浸法將兩種鉑前驅物Pt(NH3)4(NO3)2、H2Pt(OH)6分別摻雜於TiO2結構內或是擔載於表面後鍛燒200℃;另外也將樣品以氫氣還原並比較不同的Pt氧化價數其反應行為的不同。另ㄧ部分為碳的改質,利用不同碳數與結構的醇類前驅物,以含浸法的方式將碳擔載於市售光觸媒粉體UV100後鍛燒200℃,比較不同醇類改質的光催化活性,以及殘留碳的鍵結形式。
由氮氧化物的光催化降解實驗,配合FE-SEM、TEM、BET、XRPD、Raman、UV-VIS、XPS、TGA、PL光譜等鑑定,在Pt改質方面,PtOx擔載於TiO2表面的可見光催化活性優於TiO2,表面擔載的PtOx為以PtO所佔比例較多的PtO-PtO2混合價數存在;而還原的Pt0擔載於TiO2不具可見光活性,卻可促進NOx反應的完全。在碳改質方面,較高碳數的cyclohexanol擔載於UV100表面可大幅提升其可見光催化活性,並造成C=O鍵結的碳酸鹽類物質殘留,推測其為可見光催化活性的來源。鉑與碳的改質,均能有效增進可見光的催化活性,甚至在紅光下也分別具有33%與54%的總NOx去除率。
To utilize sunlight more efficiently on photocatalysis, in this study, we planed to modify TiO2 by using Pt or carbon species as a visible photo-sensitizer. The modification would expand applications on visible-light photocatalytic degradation of NOx. In addition, various characterizations were employed. Finally, a possible photocatalysis mechanism was proposed. In the aspect of Pt-modified TiO2, Pt(NH3)4(NO3)2 or H2Pt(OH)6 was added in TiO2 matrix or loaded on TiO2 surface by sol-gel process or impregnation method, respectively, followed by calcinations at 200℃. Some modified samples were reduced in H2 flow, and then applied on NOx degradation, for comparison of their reaction behavior related to their Pt oxidation states. In the aspect of carbon-modified TiO2, several different alcoholic precursors were loaded on a commercially available TiO2 (UV100) by impregnation method, followed by calcinations at 200℃, for comparison of the different carbon-numbers and structures of precursors how to influence on visible-light reaction and their bonding forms of carbonic residues.
The results of photocatalytic degradation of NOx were connected with the characterizations of FE-SEM, TEM, BET, XRPD, Raman, UV-VIS, XPS, TGA and PL spectra. In terms of Pt-modified TiO2, the activies of PtOx-loaded TiO2 were higher than those of unmodified TiO2. Moreover, the surfacial PtOx existed on TiO2 surface in forms of PtO-PtO2 mixed valence states and was main in PtO state. In addition, the reduced Pt0-loaded TiO2 showed no visible-light activity, while facilitated the NOx reaction completely. In terms of carbon-modified TiO2, the higher carbon-number precursor loaded on TiO2 surface, the better visible-light activity it presented. The carbonic residues existed in a form of C=O bonding structure, which was speculated as the visible-light responsive source. Both of the Pt- and carbon-modified TiO2 substantially improved the visible-light activities, even under red light illumination with the total NOx removal of 33% and 54%, respectively.
1.R. Feymen,費曼的主張,天下文化書坊,2001。
2.A. Fujishima, Honda, Nature 238 (1972) 37.
3.S. Devahasdin, C. Fan, Jr., K. Li, D. H. Chen., J. Photochem. Photobiol. A 156 (2003) 161.
4.S. B. Kim, S. C. Hong, Appl. Catal. B 35 (2002) 305.
5.A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B 31 (2001) 145.
6.K. Sunada, T. Watanabe, K. Hashimoto, J. Photochem. Photobiol. A 156 (2003) 227.
7.陳建志,國立清華大學化學工程研究所,可見光應答型光觸媒製備及催化活性研究,2004。
8.卡田博史,光觸媒圖解,2003。
9.C. J. Brinker, G. W. Scherer, Sol Gel Science, Academic Press, 1990.
10.M. A. Aegerter, Sol-gel: Science and Technology, NewJersey, World Scientific, 1989.
11.D. M. Mattox, Thin Solid Films 204 (1991) 25.
12.B. E. Yoldas, J. Mater. Sci. 21 (1986) 1087.
13.K. Terabe, K. Kato, H. Miyazaki, J. Mater. Sci. 29 (1984) 1617.
14.F. Cot, A. Larbot, G. Nabias, J. Eur. Cream. Soc. 18 (1998) 2175.
15.H. K. Park, D. K. Kim, C. H. Kim, J. Am. Chem. Soc. 80 (1997) 743.
16.W. J. Dawson, C. Bull. 67 (1988) 1673.
17.D. J. Shaw, Introduction to colloid and surface chemistry, 4th edition, Butterworths, 1997.
18.R. B. Zhang, L. Gao, Mater. Res. Bull. 37 (2002) 1659.
19.I. Nakamura, N. Negishi, S. Kutsuna, J. Mol Catal. A: Chem. 161 (2000) 205.
20.T. Ihara, M. Miyohsy, J. Mater. Sci. Lett. 36 (2001) 4201.
21.H. Liu, W. Yang, Y. Ma, J. Yao, Appl. Catal. A 299 (2006) 218.
22.T. Wu, G. Liu, J. Zhao, J. Phys. Chem. B 103 (1999) 4862.
23.A. L. Linsebigler, G. Lu, J. T. Yates, Jr., Chem. Rev. 95 (1995) 735.
24.S. Klosek, D. Raftery, J. Phys. Chem. B 105 (2001) 2815.
25.H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo, J. Photochem. Photobiol. A 148 (2002) 257.
26.M. Anpo, M. Takeuchi, K. Ikeue, S. Dohshi, Curr. Opin. Solid State Mater. Sci. 6 (2002) 381.
27.M. Iwasaki, M. Hara, H. Kawada, H. Tada, S. Ito, J. Colloid Interface Sci. 224 (2000) 202.
28.A. Fuerte, M. D. Hernández-Alonso, A. J. Maira et al, Chem. Commun. (2001) 2718.
29.Y. Sakata, T. Yamamoto, T. Okazaki, H. Imamura, S. Tsuchiya, Chem. Lett. (1998) 1253.
30.J. M. Herrmann, H. Tahiri, Y. Ait-Ichon, Appl. Catal. B 13 (1997) 219.
31.T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura, J. Photochem. Photobiol. A 127 (1999) 107.
32.A. V. Vorontsov, E. N. Savinov, Z. S. Jin, J. Photochem. Photobiol. A 125 (1999) 113.
33.K.-C. Cho, K.-C. Hwang, T. Sano, K. Takeuchi, S. Matsuzawa, J. Photochem. Photobiol. A 161 (2004) 155.
34.S.-H. Chien, M.-C. Kuo, C.-H. Lu, K.-N. Lu, Catal. Today 97 (2004) 121.
35.H. Kisch, L. Zang, C. Lange, Angew. Chem. Int. Ed. 37 (1998) 3034.
36.L. Zang, C. Lange, I. Abraham, S. Storck, W. F. Maier,H. Kisch, J. Phys. Chem. B 102 (1998) 10765.
37.W. Macyk, H. Kisch, Chem. Eur. J. 7 (2001) 1862.
38.H. Kisch, W. Macyk, ChemPhysChem 3 (2002) 399.
39.G. Burgeth, H. Kisch, Coord. Chem. Rev. 230 (2002) 41.
40.F.B. Li, X.Z. Li, Chemosphere 48 (2002) 1103.
41.S. Kim, S.-J. Hwang, W. Choi, J. Phys. Chem. B 109 (2005) 24260.
42.Y. Ishibai, J. Sato, S. Akita, T. Nishikawa, S. Miyagishi, J. Photochem. Photobiol. A 188 (2007) 106.
43.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269.
44.T. Sano, N. Negishi, K. Koike, K. Takeuchi, S. Matsuzawa, J. Mater. Chem., 14 (2004) 380.
45.T. Umebayashi T. Yamaki, H. Itoh, K. Asai, Appl. Phys. Lett. 81 (2002) 454.
46.T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Appl. Catal. A 265 (2004) 115.
47.K. Takeshita, A. Yamakata, T.-A. Ishibashi, H. Onishi, K. Nishijima, T. Ohno, J. Photochem. Photobiol. A 177 (2006) 269.
48.S. U. M. Khan, M. Al-shahry, W. B. Ingler Jr., Science, 297 (2002) 2243.
49.C. Xu, R. Killmeyer, M. L. Gray, S. U.M. Khan, Appl. Catal. B 64 (2006) 312.
50.H. Irie, Y. Watanabe, K. Hashimoto, Chem. Lett. 32 (2003) 772.
51.M. Shen, Z. Wu, H. Huang, Y. Du, Z. Zou, P. Yang, Mater. Lett. 60 (2006) 693.
52.S.-W. Hsu, T.-S. Yang, T.-K. Chen, M.-S. Wong, Thin Solid Films 515 (2007) 3521.
53.C. Lettmann, K. Hildenbrand, H. Kisch, W. Macyk, W. F. Maier, Appl. Catal. B 32 (2001) 215.
54.S. Sakthivel, H. Kisch, Angew. Chem. Int. Ed. 42 (2003) 4908.
55.P. Zabek, J. Eberl, H. Kisch, Photochem. Photobiol. Sci. 8 (2009) 264.
56.Y.-H. Tseng, C.-S. Kuo, C.-H. Huang, Y.-Y. Li, P.-W. Chou, C.-L. Cheng, M.-S. Wong, Nanotechnology 17 (2006) 2490.
57.C.-S. Kuo, Y.-H. Tseng, C.-H. Huang, Y.-Y. Li, J. Mol. Catal. A: Chem. 270 (2007) 93.
58.S. Y. Treschev, P.-W. Chou, Y.-H. Tseng, J.-B. Wang, E. V. Perevedentseva, C.-L. Cheng, Appl. Catal. B 79 (2007) 8.
59.P.-W. Chou, S. Treschev, P.-H. Chung, C.-L. Cheng, Y.-H. Tseng, Y.-J. Chen, M.-S. Wong, Appl. Phys. Lett. 89 (2006) 131919.
60.Y.-J. Chen, J.-M. Wu, C.-S. Lin, G.-Y. Jhan, M.-S. Wong, S.-C. Ke, H.-H. Lo, J. Vac. Sci. Technol. A 27 (2009) 862.
61.L. Lin, W. Lin, Y.X. Zhu, B.Y. Zhao, Y.C. Xie, Y. He, Y.F. Zhu, Journal of Molecular Catalysis A: Chemical 236 (2005) 46.
62.M. Janus, M. Inagaki, B. Tryba, M. Toyoda, A.W. Morawski, Appl. Catal. B 63 (2006) 272.
63.A. Morawski, M. Janus, B. Tryba, M. Inagaki, K. Kałucki, C. R. Chimie 9 (2006) 800.
64.M. Li, S. Zhou, Y. Zhang, G. Chen, Z. Hong, Appl. Surf. Sci. 254 (2008) 3762.
65.X. Wang, S. Meng, X. Zhang, H. Wang, W. Zhong, Q. Du, Chem. Phys. Lett. 444 (2007) 292.
66.I.-C. Kang, Q. Zhang, S. Yin, T. Sato, F. Saito, Appl. Catal. B 80 (2008) 81.
67.D.-E. Gu, Y. Lu, B.-C. Yang, Y.-D. Hu, Chem. Commun. (2008) 2453.
68.K. Sugiyama, T. Ogawab, N. Saito, Y. Hosoya, T. Yajima, Surf. Coat. Technol. 173 (2003) 882.
69.H. Liu, A. Imanishi, Y. Nakato, J. Phys. Chem. C 111 ( 2007) 8603.
70.S. Goldstein, D. Behar, J. Rabani, J. Phys. Chem. C 112 (2008) 15134.
71.Y. Li, D.-S. Hwang, N. H. Lee, S.-J. Kim, Chem. Phys. Lett. 404 (2005) 25.
72.E. M. Rockafellow, X. Fang, B. G. Trewyn, K. Schmidt-Rohr, W. S. Jenks, Chem. Mater. 21 (2009) 1187.
73.J.-M. Herrmann, J. Matos, J. Disdier, C. Guillard, J. Laine, S. Malato, J. Blanco, Catal. Today 54 (1999) 255.
74.Y. Yu, J. C. Yu, J.-G. Yu, Y.-C. Kwok, Y.-K. Che, J.-C. Zhao, L. Ding, W.-K. Ge, P.-K. Wong, Appl. Catal. A 289 (2005) 186.
75.Y. Ou, J. Lin, S. Fang, D. Liao, Chem. Phys. Lett. 429 (2006) 199.
76.K. Dai, T. Peng, D. Ke, B. Wei, Nanotechnology 20 (2009) 125603.
77.L.-W. Zhang, H.-B. Fu, Y.-F. Zhu, Adv. Funct. Mater. 18 (2008) 2180.
78.T. H. Lim, J. Photochem. Photobiol. A 134 (2000) 209.
79.M. Anpo, Catalysis Surveys from Japan 1 (1997) 169.
80.Y.-M. Lin, Y.-H. Tseng, J.-H. Huang, C.-C. Chao, C.-C. Chen, I.-K. Wang, Environ. Sci. Technol. 40 (2006) 1616.
81.O.I. Miller, D.S. Celermajer, J.E. Deanfield, D.J. Macrae, Arch. Dis. Child 70 (1994) 47.
82.R.S. Wade, C.E. Castro, Chem. Res. Toxicol. 9 (1996) 1382.
83.Raman C. V., Indian J. Phys. 2 (1928) 387.
84.Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Sol. 15 (1966) 627.
85.J. Chastain, J. F. Moulder, W. F. Strickle, Handbook of X-ray Photoelectron Spectroscopy, 1992.
86.J. Yang, D. Li, Z. Zhang et al, J. Photochem. Photobiol. A 137 (2000) 197.
87.A. Sclafani, J.-M. Herrmann, J. Photochem. Photobiol. A 113 (1998) 181.
88.高濂,鄭珊,張青紅,陳憲偉,奈米光觸媒,2004。
89.T. Matsunaga, M. Inagaki, Appl. Catal. B 64 (2006) 9.
90.Mona P. Moret, Richard Zallen, Dilip P. Vijay et al, Thin Solid Films 366 (2000) 8.
91.L.-V. Daimay, B. C. Norman, G. F. William, Infrared and Raman Characteristic Frequences of Organic Molecules, 1991.
92.T. Oksaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 7 (1978) 321.
93.H. Berger, H. Tang, F. Kevy, J. Cryst. Growth 130 (1993) 108.
94.G. J. Wilson, G. D. Will, R. L. Frost, S. A. Montgomery, J. Mater. Chem. 12 (2002) 1787.
95.M. Inagaki, T. Imai, T. Yoshikawa, B. Tryba, Appl. Catal. B 51 (2004) 247.
96.S. Gopinath, S.G. Hegde, A.V. Ramaswamy, S. Mahapatra, Mater. Res. Bull. 37 (2002) 1323.
97.E. Papirer, R. Lacroix, J.B. Donnet, G. Nanse, P. Fioux, Carbon 33 (1995) 63.
98.M. R. Hoffman, Chem. Rev. 95 (1995) 69.
99.K. C. Song, S. E. Pratsinis, J. Colloid Interface Sci. 231 (2000) 289.
100.J. Yu, J. C. Yu, W. Ho, M. K.-P. Leung, B. Cheng, G. Zhang, X. Zhao, Appl. Catal. A 255 (2003) 309.
101.K. C. Song, S. E. Pratsinis, J. Colloid Interface Sci. 231 (2000) 289.
102.J. Yu, X. Zhao, Q. Zhao, Thin Solid Films 379 (2000) 7.
103.John F. Porter, Yu-Guang Li, Chak K. Chan, J. Mater. Sci. Lett. 34 (1999) 1523.
104.H.-J. Youn, P. S. Ha, H. S. Jung, K. S. Hong, Y. H. Park, K. H. Ko, J. Colloid Interface Sci. 211 (1999) 321.
105.H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Levy, J. Appl. Phys. 75 (1994) 2042.