研究生: |
喬書明 David Joseph, Sumin |
---|---|
論文名稱: |
無限能量收集及功率傳輸之整流天線 Rectennas for Wireless Energy Harvesting and Power Transfer |
指導教授: |
徐碩鴻
Hsu, Shuo-Hung 黃漪 Huang, Yi |
口試委員: |
徐永珍
Hsu, Yung-Jane 邱煥凱 Chiou, Hwann-Kaeo 周加峰 Zhou, Jiafeng 約翰·巴切洛 Batchelor, John 奈傑爾·布朗寧 Browning, Nigel |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 208 |
中文關鍵詞: | 能量收集 、整流天線 、寬頻整流天線 、天線 、無線電力傳輸 、雙工整流天線 、大功率整流器 |
外文關鍵詞: | Energy harvesting, Rectenna, Broadband rectenna, antennas, Wireless power transfer, Duplexing rectenna, high-power rectifier |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著無線技術的快速發展以及智能家居、智慧城市和物聯網應用對於低功耗電子電路的需求,許多研究趨勢傾向於通過從環境電磁空間或使用專用射頻源收集射頻能量。最近,射頻環境能量收集和無線電力傳輸(Wireless Power Transfer, WPT) 技術作為一種清潔和再生能源受到了廣泛關注。然而,整流天線或整流天線的優化設計在實際應用中仍然非常具有挑戰性。整流天線設計存在許多關鍵問題需要研究,例如環境功率條件下的低轉換效率和高非線性。此外,在開發用於不同應用的整流天線時,文獻中並未明顯考慮用於無線能量收集 (Wireless Energy Harvesting, WEH) 和無線電力傳輸的整流天線之間的區別。本論文的目的是對整流天線進行全面的研究,旨在克服該課題最具挑戰性的研究問題。這項工作有六個主要貢獻,可分為兩個主要部分。
第一部分提出了三個開發 WEH 整流天線的貢獻。由於使用了整流電路的非線性元件,寬頻整流天線的設計極具挑戰性。因此,我們為 WEH的應用提出了一種低複雜度的新型寬頻整流天線。所提出的整流天線由新型寬頻八木天線和基於傳輸線的寬頻整流器組成。在整流器設計中採用了一種新穎的三級阻抗匹配技術,可在微縮的尺寸下實現更高的效率。在類似的操作條件下,所提出的寬頻整流器在頻寬和轉換效率方面皆優於其他設計。第二部分提出了一種新型雙頻整流天線可用於低功率環境能量收集。目前文獻中報導的大多數整流天線都是為中高輸入功率條件設計的,而我們所提出的整流天線由具有折疊短截線 (Stub) 的新型偶極天線和高靈敏度整流器組成。在偶極天線中引入了折疊短截線以實現雙模式操作,我們還提出了一種新穎的基於單電感的高靈敏度整流器。在此整流器設計的基礎上,還提出了一種雙頻高靈敏度整流器。此處提出的整流天線設計證實了從低功率環境條件收集射頻功率的可行性。第三部分提出了一種新型射頻能量採集器,它使用組合採集架構來捕獲 915-960 MHz、1.8-2.7 GHz 和 3.4-3.7 GHz 頻段中的環境射頻能量。所提出的射頻能量收集器利用高靈敏度和高效率的整流器來提高性能,並證實了從典型的周圍環境中捕獲射頻能量於低功率應用的可行性。
WPT 應用的整流天線主要在第二部分介紹。我們提出了一種新穎的通信整流天線解決方案,可在無線傳感器節點中提供有效的數據和功率傳輸。除了傳統整流天線的環境能量收集外,此設計還可以同時執行無線訊號和電力傳輸,以促進無線感測器網路節點的不間斷供電及數據傳輸。同步無線訊號與功率傳輸(Simultaneously Wireless Information and Power Transfer, SWIPT) 和 環境無線能量收集(Ambient Wireless Energy Harvesting, AWEH) 分別採用雙極化 2×1 方形貼片天線陣列及多節彎曲寬頻單極天線。此處所提出的具有環境能量收集功能的通訊整流天線陣列可用於成為未來無線傳感器節點。商用矽蕭特基二極體的低崩潰電壓限制了傳統整流器高功率區域的轉換效率。因此,我們提出了一種用於高功率應用的新型基於氮化鎵蕭特基二極體的微波整流器。利用氮化鎵晶片與電路板之間的鎊線的電感效應,我們提出一種新穎的低損耗阻抗匹配,且此整流器在高功率操作以及峰值電壓和功率方面優於其他已發表的設計。用於 WEH 和 WPT 的傳統整流天線只能提供有限的直流功率,並且通常不具備整流天線位置的訊息。因此,此研究提出了一種具有諧波回授能力的新型雙工整流天線,可用於具有天線對準的高效 WPT 應用。雙工整流天線可以將0.915 GHz的入射射頻功率有效地轉換為直流,並且還可以將諧波信號發送回1.83 GHz的射頻發射器,用於追踪整流天線的位置,從而提高功率傳輸效率,而無需額外的天線和發射器。因此,這個基於具有回授特性的雙工整流天線的完整 WPT 系統是未來高效 WPT 應用的非常有應用前景的解決方案。
With the rapid advancement of the wireless technologies and demands of low-power electronic circuits for smart home, smart cities and IoT applications, various research trends have tended to investigate the feasibility of powering these circuits by harvesting RF energy from ambient electromagnetic space or by using dedicated RF sources. Recently, RF ambient energy harvesting and WPT technologies have gained much interest as a clean and renewable power source. However, the optimal design of a rectifying-antenna or rectenna, is still very challenging for deploying in real applications. A number of key issues and research problems have been identified for rectenna designs, such as the low conversion efficiency and strong nonlinearity under the ambient power conditions. Moreover, a clear distinction between rectennas for wireless energy harvesting (WEH) and wireless power transfer (WPT) are not significantly considered in the literatures while developing the rectennas for different applications. The purpose of this thesis is to present a comprehensive study into rectennas, aiming at overcoming the most challenging research problems of this topic. There are six main contributions from this PhD work, which can be divided into two main sections.
In the first section, three contributions are presented aimed to develop WEH rectennas. The design of broadband rectennas is exceptionally challenging due to the utilization of nonlinear elements of the rectifying circuit. Therefore, a low complexity novel broadband rectenna is initially proposed for WEH applications. The proposed rectenna consists of a novel broadband Yagi-Uda antenna and a transmission lines-based broadband rectifier. A novel three-stage impedance matching technique is utilized in the rectifier design to achieve high efficiency with a compact size. The proposed broadband rectifier outperforms other designs in bandwidth and conversion efficiency under similar operating conditions. Then, a novel dual-band rectenna is proposed for low power ambient energy harvesting. Most reported rectennas in the literature were designed for medium and high input power conditions. The proposed rectenna consists of a novel dipole antenna with folded stubs and a highly sensitive rectifier. Folded stubs are introduced in the dipole antenna for dual-mode operation. A novel single external inductor-based high sensitivity rectifier is also proposed. Based on the rectifier design, a dual-band high sensitivity rectifier is also proposed. This rectenna design confirms the feasibility of harvesting RF power from low power ambient conditions. Thirdly, a novel RF energy harvester using combined harvesting topology to capture the ambient RF energy in 915-960 MHz, 1.8-2.7 GHz, and 3.4-3.7 GHz frequency bands is proposed. The proposed RF energy harvester utilised high sensitivity and high efficiency rectifiers for improving the performance. This design confirms the feasibility of capturing RF energy from a typical ambient environment for low power applications.
Rectennas for WPT applications are mainly presented in the second section. A novel communication rectenna solution is proposed to provide effective data and power transfer in wireless sensor nodes. Along with the ambient energy harvesting of conventional rectenna, the proposed design can also perform simultaneous wireless information and power transfer for facilitating uninterrupted power supply and data transfer of WSN nodes. A dual polarized 2×1 square patch antenna array and a multisection bended broadband monopole antenna are employed for SWIPT and AWEH, respectively. Thus, the proposed communication rectenna array with ambient energy harvesting can be a promising candidate for future wireless sensor nodes. Low breakdown voltage in commercial silicon Schottky diodes limits the conversion efficiency in the high-power region of conventional rectifiers. Therefore, a novel GaN Schottky diode-based microwave rectifier is proposed for high-power applications. A novel low loss impedance matching is utilised by exploiting the unavoidable inductance effects of bond wires used for providing the electrical connection between GaN chip and board. The proposed rectifier is better than the other published designs in terms of the high-power operation as well as the peak voltage and power. Conventional rectennas for WEH and WPT can only offer a limited DC power amount and typically do not have the rectenna’s location knowledge. Thus, a novel duplexing rectenna with a harmonic feedback capability for efficient WPT applications with the antenna alignment is proposed. The duplexing rectenna can efficiently convert the incident RF power at 0.915 GHz to DC and also send a reasonable harmonic signal back to the RF transmitter at 1.83 GHz for tracking the position of rectenna to improve power transfer efficiency without the need of another antenna and transmitters. Thus, this complete WPT system based on a duplexing rectenna with feedback property is a very promising solution for future efficient WPT applications.
[1] “IoT analytics. State of the IoT 2018: Number of IoT devices now at 7B – Market accelerating,” [Online]. Available: https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/.
[2] Fierce electronics: “Wireless sensor use is expanding in industrial applications,” [Online]. Available: https://www.fierceelectronics.com/components/wireless-sensor-use-expanding-industrial-applications/.
[3] R. Vullers, R. Schaijk, H. Visser, J. Penders, and C. Hoof, “Energy harvesting for autonomous wireless sensor networks,’’ IEEE Solid-State Circuits Mag., pp. 29-38, 2010.
[4] P. Jaffe and J. McSpadden, ‘‘Energy conversion and transmission module for space solar power,’’ Proc. IEEE, vol. 101, no. 6, pp. 1424–1437, Jun. 2013.
[5] A. Collado and A. Georgiadis, ‘‘Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 8, pp. 2225–2234, Aug. 2013.
[6] R. Arai, S. Furukawa, N. Sato, and T. Yasuda, ‘‘Organic energy harvesting devices achieving power conversion efficiencies over 20% under ambient indoor lighting,’’ J. Mater. Chem. A, vol. 7, no. 35, pp. 20187–20192, 2019.
[7] B. Gregg and M. Hanna, ‘‘Comparing organic to inorganic photovoltaic cells: Theory, experiment, simulation,’’ J. Appl. Phys., vol. 93, no. 6, pp. 3605–3614, Mar. 2003.
[8] G. Mahan, B. Sales, and J. Sharp, ‘‘Thermoelectric materials: New approaches to an old problem,’’ Phys. Today, vol. 50, no. 3, pp. 42–47, Mar. 1997.
[9] V. Leonov, ‘‘Thermoelectric energy harvesting of human body heat for wearable sensors,’’ IEEE Sensors J., vol. 13, no. 6, pp. 2284–2291, Jun. 2013.
[10] H. S. Kim, J. -H. Kim, and J. Kim, ‘‘A review of piezoelectric energy harvesting based on vibration,’’ Int. J. Precision Eng. Manuf., vol. 12, no. 6, pp. 1129–1141, Dec. 2011.
[11] S. Kim et al., “Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms,” Proc. IEEE, vol. 102, no. 11, pp. 1649–1666, Nov. 2014.
[12] H. Visser and R. Vullers, ‘‘RF energy harvesting and transport for wireless sensor network applications: Principles and requirements,’’ Proc. IEEE, vol. 101, no. 6, pp. 1410–1423, Jun. 2013.
[13] Gigaom. “Energy harvesting chips: The next big thing for a connected world,’’ [Online]. Available: https://gigaom.com/2013/11/21/energy-harvesting-chips-the-next-big-thing-for-aconnected- world/.
[14] Texas instruments. “BQ25504 Ultra-Low Power Boost Converter with Battery Management for Energy Harvester | Nano-Power Management,’’ [Online]. Available: https://www.ti.com/product/BQ25504
[15] S. Catarinucci, et al., “An IoT-aware architecture for smart healthcare systems,” IEEE Internet Things J., vol. 2, No. 6, pp. 515-526, Mar. 2015.
[16] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, “Internet of Things for Smart Cities,” IEEE Internet Things J., vol. 1, no. 1, pp. 22-32, Feb. 2014.
[17] N. Tesla, “The transmission of electrical energy without wires,” Elect. World Eng., vol. 1, 1904.
[18] W. C. Brown, “The history of the development of the rectenna,” Solar Power Satell. Microw. Power Transmiss. Reception, Washington, DC, USA, Tech. Rep. NASA CP-2141, 1980, pp. 271–280.
[19] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, no. 5834, pp. 83-86, July 2007.
[20] N. Shinohara, “Power without wires,” IEEE Microw. Mag., vol. 12, no. 7, pp. 64–73, Dec. 2011.
[21] T. Hiramatsu, X. Huang, M. Kato, T. Imura, and Y. Hori, “Wireless charging power control for HESS through receiver side voltage control,” Proc. IEEE Appl. Power Electron. Conf., 2015, pp. 1614–1619.
[22] J. Dai and D. C. Ludois, ‘‘A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications,’’ IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6017–6029, Nov. 2015.
[23] F. Lu, H. Zhang, H. Hofmann, and C. Mi, “A double-sided LCLC-compensated capacitive power transfer system for electric vehicle charging,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6011–6014, 2015.
[24] F. Lu, H. Zhang, H. Health, and C. C. Mi, “An inductive and capacitive combined wireless power transfer system with LC-compensated topology,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8471–8482, Dec. 2016.
[25] Z. Harouni, L. Cirio, L. Osman, A. Gharsallah, and O. Picon, “A dual circularly polarized 2.45-GHz rectenna for wireless power transmission,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 306–309, 2011.
[26] X. Yang, W. Geyi, and H. Sun, ‘‘Optimum design of wireless power transmission system using microstrip patch antenna arrays,’’ IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1824–1827, 2017.
[27] A. Ahmad, M. S. Alam, and R. Chabaan, ‘‘A comprehensive review of wireless charging technologies for electric vehicles,’’ IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 38–63, Mar. 2018.
[28] W. S. Jones, L. L. Morgan, J. B. Forsyth, and J. P. Skratt, “Laser power conversion system analysis, volume 2,” Lockheed Missiles Space Corp., Palo Alto, CA, USA, 1979.
[29] D. E. Raible, “High intensity laser power beaming for wireless power transmission,” Master’s Thesis, Dept. Elect. Comput. Eng., Cleveland State University, Cleveland, OH, USA, May 2008.
[30] N. Kawashima and K. Takeda, “Laser energy transmission for a wireless energy supply to robots,” Proc. Symp. Automat. Robot. Construction, 2005, pp. 373–380.
[31] “AUVSI: Laser Motive, Lockheed demonstrate real-world laser power,” 2012. [Online]. Available: https://www.flightglobal.com/news/articles/auvsi-lasermotive-lockheed demonstrate-real-world-laser-375166/
[32] T. He, et al., “High-power high-efficiency laser power transmission at 100m using optimized multi-cell GaAs converter,” Chin. Phys. Lett, vol. 31, no. 10, pp. 1042031–1042035, 2014.
[33] K. Jin and W. Zhou, “Wireless Laser Power Transmission: A Review of Recent Progress,” IEEE Trans. Power Electron., vol. 34, no. 4, pp. 3842-3859, April 2019.
[34] M. Pinuela, P. D. Mitcheson, and S. Lucyszyn, “Ambient RF energy harvesting in urban and semi-urban environments,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2715–2726, Jul. 2013.
[35] C. Song, et al., “A Novel Six-Band Dual CP Rectenna Using Improved Impedance Matching Technique for Ambient RF Energy Harvesting,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 3160-3171, July 2016
[36] Y. Xu and R. G. Bosisio, “Design of Multiway Power Divider by Using Stepped-Impedance Transformers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 9, pp. 2781-2790, Sept. 2012.
[37] S. Ladan, A. B. Guntupalli, and W. Ke, “A high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmission,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 61, no. 12, pp. 3358-3366, Dec. 2014.
[38] Bern Dibner, “Oersted and the discovery of electromagnetism,” New York, Blaisdell, 1962.
[39] J. C. Maxwell, “A Treatise on Electricity and Magnetism,” Clarendon press, 1873.
[40] Baird, Davis, Hughes, R.I.G. and Nordmann, Alfred eds. Heinrich Hertz: Classical Physicist, Modern Philosopher. New York, 1998.
[41] A. S. Marincic, “Nikola tesla and the wireless transmission of energy,” IEEE Trans. Power App. Syst., vol. PAS-101, no. 10, pp. 4064–4068, Oct. 1982.
[42] C. K. Lee, W. X. Zhong, and S. Y. Hui, “Recent progress in Mid-Range wireless power transfer,” Proc. IEEE Energy Convers. Cong. Expo., 2012, pp. 3819–3824.
[43] N. Tesla, “Apparatus for transmitting electrical energy,” U.S. Patent 1 119 732, Dec. 1914.
[44] M. Cheney, R. Uth, J. Glenn, Tesla, Master of Lightning, Barnes & Noble Publishing, 1999.
[45] S. C. Nambiar and M. Manteghi. “A simple wireless power transfer scheme for implanted devices”, Proc. 2014 United States Nat. Committee of URSI Nat. Radio Science Meeting (USNC-URSI NRSM). 2014, pp. 1–1.
[46] Tesla coil, from Wikipedia https://en.wikipedia.org/wiki/Tesla_coil#cite_note-36.
[47] M. Cheney, Tesla: “Man, Out of Time,” Englewood Cliffs, NJ, USA: Prentice-Hall, 1981.
[48] H. Boot and J. Randafl, “Historical notes on the cavity magnetron,” IEEE Trans. Electron. Devices, vol. ED-23, no. 7, July 1976.
[49] W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microw. Theory Techn., vol. 32, no. 9, pp. 1230–1242, Sep. 1984.
[50] B. Strassner and K. Chang, “Microwave power transmission: Historical milestones and system components,” Proc. IEEE, vol. 101, no. 6, pp. 1379–1396, Jun. 2013.
[51] P. Glaser, “Power from the Sun: Its future,” Science, vol. 162, pp. 857–861, 1968.
[52] J. Schlesak, A. Alden, and T. Ohno, ‘‘SHARP rectenna and low altitude flight trials,’’ Proc. IEEE Global Telecommun. Conf., New Orleans, LA, USA, Dec. 2–5, 1985.
[53] Y. Fujino, T. Ito, N. Kaya, H. Matsumoto, K. Kawabata, H. Sawada, and T. Onodera, ‘‘A rectenna for MILAX,’’ Proc. Wireless Power Transm. Conf., Feb. 1993, pp. 273–277.
[54] J. M. Mcspadden and J. C. Mankins, ‘‘Summary of recent results from NASA’s Space Solar Power (SSP) programs and the current capabilities of microwave WPT technology,’’ IEEE Microw. Mag., vol. 3, no. 4, pp. 46–57, Dec. 2002.
[55] A. Kurs et.al., “Wireless power transfer via strongly coupled magnetic resonances,” Science, vol. 317, pp. 83–86, 2007.
[56] “Welcome to the wireless power consortium, home of wireless charging,” [Online]. Available: http://www.wirelesspower consortium.com/
[57] “This Mophie wireless charger is probably the closest thing to Airpower that Apple will ever sell,” [Online]. Available: https://www.theverge.com /2019/8/9/20798422/apple-mophie-dual-3-in-1-wireless-charging-padairpower.
[58] T. Yoo and K. Chang, “A 35 GHz integrated circuit rectifying antenna with 33 percent efficiency,” Electron. Lett., vol. 27, no. 23, p. 2117, Nov. 1991.
[59] T. Yoo and K. Chang, “Theoretical and experimental development of 10 and 35 GHz rectennas,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 1259–1266, June 1992.
[60] J. O. McSpadden, T. Yoo, and K. Chang, “Theoretical and experimental investigation of a rectenna element for microwave power transmission,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2359–2366, Dec. 1992.
[61] T. East, “A self-steering array for the SHARP microwave-powered aircraft,” IEEE Trans. Antennas Propag., vol. 40, no. 12, pp. 1565–1567, Dec. 1992.
[62] P. Koert and J. T. Cha, “Millimeter wave technology for space power beaming,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 6, pp. 1251–1258, Jun. 1992.
[63] J. O. McSpadden, F. Lu, and K. Chang, “Design and experiments of a high-conversion efficiency 5.8-GHz rectenna,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 12, pp. 2053–2060, Dec. 1998.
[64] A. Alden and T. Ohno, “Single fore plane high power rectenna,” Electron. Lett., vol. 28, no. 11, pp. 1072–1073, May 1992.
[65] Y.-H. Suh, C. Wang, and K. Chang, “Circularly polarized truncated corner square patch microstrip rectenna for wireless power transmission,” Electron. Lett., vol. 36, pp. 600–602, Mar. 2000.
[66] Y.-H. Suh and K. Chang, “A high-efficiency dual-frequency rectenna for 2.45- and 5.8- GHz wireless power transmission,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 7, pp. 1784–1789, Jul. 2002.
[67] N. Shinohara and H. Matsumoto, “Experimental study of large rectenna array for microwave energy transmission,” IEEE Trans. Microw. Theory Techn., vol. 46, No. 3, pp.261- 268, Mar. 1998.
[68] B. Strassner and K. Chang, “Highly efficient C-band circularly polarized rectifying antenna array for wireless microwave power transmission,” IEEE Trans. Antennas Propag., vol. 51, No. 6, pp.1347-1356, Jun. 2003.
[69] Y.-J. Ren and K. Chang, “5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 4, pp. 1495–1502, Jun. 2006.
[70] J. A. Hagerty, F. B. Helmbrecht, W. H. McCalpin, R. Zane, and Z. B. Popovic, “Recycling ambient microwave energy with broad-band rectenna arrays,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 1014–1024, Mar. 2004.
[71] Y. Ren and K. Chang, "New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission," IEEE Trans. Microw. Theory Techn vol. 54, no. 7, pp. 2970-2976, July 2006.
[72] M. Ali, G. Yang, and R. Dougal, “A new circularly polarized rectenna for wireless power transmission and data communication,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 205– 208, 2005.
[73] C. Chin, Q. Xue, and C. Chan, “Design of a 5.8-GHz rectenna incorporating a new patch antenna,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 175–178, 2005.
[74] Z. Harouni, L. Osman, and A. Gharsallah, “Efficient 2.45 GHz CPW patch antenna including harmonic rejecting device for wireless power transmission,” in Proc. Int. Multi-Conf. Syst. Signals and Devices, 2011, pp. 1–3.
[75] M. Ali, G. Yang, and R. Dougal, “Miniature circularly polarized rectenna with reduced out of band harmonics,” IEEE Antennas and Wireless Propagat. Lett., vol. 5, no. 1, pp. 107–110, 2006.
[76] Y.-J. Ren and K. Chang, “5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 4, pp. 1495–1502, Jun. 2006.
[77] T.-c. Yo, C.-m. Lee, C.-m. Hsu, and C.-h. Luo, “Compact circularly polarized rectenna with unbalanced circular slots,” IEEE Trans. Antennas Propag., vol. 56, no. 3, pp. 882–886, Mar. 2008.
[78] Z. K. Ma, and G. A. E. Vandenbosch, “Wideband harmonic rejection filtenna for wireless power transfer,” IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 371–377, Oct. 2013.
[79] H. Chiou and I. Chen, “High-Efficiency Dual-Band On-Chip Rectenna for 35- and 94-GHz Wireless Power Transmission in 0.13-um CMOS Technology,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 3598-3606, Dec. 2010.
[80] S. Ladan, A. B. Guntupalli and K. Wu, “A High-Efficiency 24 GHz Rectenna Development Towards Millimeter-Wave Energy Harvesting and Wireless Power Transmission,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 61, no. 12, pp. 3358-3366, Dec. 2014.
[81] D. Mavrakis, ‘‘Small Cell Market Status December 2012,’’ London, U.K., 2012.
[82] D. Watkins, Embedded WLAN (Wi-Fi) CE Devices: Global Market Forecast. Boston, MA, USA: Strategy Analytics, 2014.
[83] B. Sanou, ‘‘ICT Facts and Figures,’’ International Telecommunication Union, Geneva Switzerland, 2013
[84] M. Pinuela, P. D. Mitcheson, and S. Lucyszyn, “Ambient RF energy harvesting in urban and semi-urban environments,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2715–2726, Jul. 2013.
[85] S. Hemour, Y. P. Zhao, C. H. P. Lorenz, D. Houssameddine, Y. S. Gui, C.m. Hu, and K. Wu, “Towards low-power high-efficiency RF and microwave energy harvesting,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 4, pp. 965–976, Feb. 2014.
[86] J. Hagerty and Z. Popovic´, ‘‘An experimental and theoretical characterization of a broadband arbitrarily-polarized rectenna array,’’ IEEE MTT-S Int. Microwave Symp. Dig., Phoenix, AZ, USA, May 2001, pp. 1855–1858.
[87] A. Georgiadis, G. Andia-Vera, and A. Collado, “Rectenna design and optimization using reciprocity theory and harmonic balance analysis for electromagnetic (EM) energy harvesting,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 444–446, May 2010.
[88] N. Zhu, R. W. Ziolkowski, and H. Xin, “Electrically small GPS L1 rectennas,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 935–938, 2011.
[89] U. Olgun, et al., “Investigation of rectenna array configurations for enhanced RF power harvesting,” IEEE Antenna Wireless Propag. Lett., vol. 10, pp. 262–265, 2011.
[90] H. Takhedmit, et al., “Compact and efficient 2.45 GHz circularly polarised shorted ring slot rectenna,” Electron. Lett., vol. 48, no. 5, pp. 253–254, 2012.
[91] K. Niotaki, et al., “A compact dual-band rectenna using slot-loaded dual-band folded dipole antenna,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1634–1637, Dec. 2013.
[92] E. Falkenstein, ‘‘Characterization and design of a low-power wireless power delivery system,’’ Ph.D. dissertation, Dept. Electr., Comput. Energy Eng., Univ. Colorado Boulder, Boulder, CO, USA, Jan. 2012.
[93] E. Falkenstein, M. Roberg, and Z. Popovic, ‘‘Low-power wireless power delivery,’’ IEEE Trans. Microw. Theory Tech., vol. 60, no. 7, pp. 2277–2286, Jul. 2012.
[94] H. Sun, Y.-x. Guo, M. He and Z. Zhong, “A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting,” IEEE Antennas and Wireless Propag. Lett., vol. 12, pp. 918–921, 2013.
[95] A. Collado and A. Georgiadis, ‘‘Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 8, pp. 2225–2234, Aug. 2013.
[96] V. Kuhn, C. Lahuec, F. Seguin, and C. Person, “A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 5, pp. 1768–1778, May 2015.
[97] C. Song, Y. Huang, J. Zhou, J. Zhang, S. Yuan and P. Carter, “A High-Efficiency Broadband Rectenna for Ambient Wireless Energy Harvesting,” IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3486-3495, Aug. 2015.
[98] C. Song, et al., “A Novel Six-Band Dual CP Rectenna Using Improved Impedance Matching Technique for Ambient RF Energy Harvesting,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 3160-3171, July 2016
[99] V. Palazzi, M. D. Prete, and M. Fantuzzi, “Scavenging for energy: A rectenna design for wireless energy harvesting in UHF mobile telephony bands,” IEEE Microw. Mag., vol. 18, no. 1, pp. 91–99, Feb. 2017
[100] G. Marrocco, “The art of UHF RFID antenna design: Impedance-matching and size reduction techniques,” IEEE Antennas Propag. Mag., vol. 50, no. 1, pp. 66–79, 2008.
[101] C. Song, et al., “Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3950–3961, May 2017.
[102] A. Z. Ashoor and O. M. Ramahi, “Polarization-independent cross-dipole energy harvesting surface,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 3, pp. 1130–1137, 2019.
[103] S. Kim et al., “Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms,” Proc. IEEE, vol. 102, no. 11, pp. 1649-1666, Nov. 2014.
[104] R. J. Vyas, B. B. Cook, Y. Kawahara, and M. M. Tentzeris, “E-WEHP: A battery less embedded sensor-platform wirelessly powered from ambient digital-TV signals,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 6, pp. 2491–2505, Jun. 2013.
[105] C. Song, Y. Huang, J. Zhou, J. Zhang, S. Yuan, and P. Carter, “A high-efficiency broadband rectenna for ambient wireless energy harvesting,” IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3486-3495, Aug. 2015.
[106] V. Palazzi et al., “A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 366–379, Jan. 2018.
[107] W.R. Deal, Y. Qian, T. Itoh and V. Radisc, “Planar Integrated Antenna Technology,” Microw. J., Jul. 1999.
[108] N. Kaneda, W. R. Deal, Y. Qian, R. Waterhouse and T. Itoh, “A broadband planar quasi-Yagi antenna,” IEEE Trans. Antennas Propag., vol. 50, no. 8, pp. 1158-1160, Aug. 2002.
[109] P. T. Nguyen, A. Abbosh and S. Crozier, “Wideband and compact quasi-Yagi antenna integrated with balun of microstrip to slotline transitions,” Electron. Lett., vol. 49, no. 2, pp. 88-89, Jan. 2013.
[110] P. V. Nikitin and K. V. S. Rao, “Compact Yagi antenna for handheld UHF RFID reader,” Proc. IEEE Int. Symp. Antenna and Propagation, Jul. 2010.
[111] H. C. Huang, J. C. Lu, and P. Hsu, “A planar Yagi–Uda antenna with a meandered driven dipole and a concave parabolic reflector,” Proc. Asia-Pacific Microw. Conf., pp. 995–998, Dec. 2010.
[112] M. Bemani and S. Nikmehr, “A novel wide-band microstrip yagi-uda array antenna for WLAN applications,” Prog. Electromagn. Res., Vol. 16, 389–406, 2009.
[113] J. Yeo and J. I. Lee, “Broadband series-fed two dipole array antenna with an integrated balun for mobile communication applications,” Microwave. Opt. Technol. Lett., vol. 54, no. 9, pp. 2166-2168, Sep. 2012.
[114] S. A. Rezaeieh, M. A. Antoniades and A. M. Abbosh, “Miniaturized Planar Yagi Antenna Utilizing Capacitively Coupled Folded Reflector,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 1977-1980, 2017.
[115] Y. Luo, Q. Chu, and J. Bornemann, “A differential‐fed Yagi–Uda antenna with enhanced bandwidth via addition of parasitic resonator,” Microw. Opt. Technol. Lett., vol. 59, no. 1, pp. 156-159, Jan. 2017
[116] R. Chopra and G. Kumar, “Uniplanar Microstrip Antenna for Endfire Radiation,” IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 3422-3426, May 2019.
[117] L. Lu, L. Shu, A. Denisov, L. Dongyu, C. Yangyang and T. Shuo, “A broadband and high gain yagi antenna with complex parabolic boundary reflector,” Proc. IEEE Int. Symp. Antenna and Propagation, San Diego, CA, pp. 1785-1786, 2017.
[118] S. Chandravanshi, S. S. Sarma, and M. J. Akhtar, “Design of triple band differential rectenna for RF energy harvesting,” IEEE Trans. Antennas Propag., vol. 66, no. 6, pp. 2716–2726, Jun. 2018.
[119] Kuhn, V., C. Lahuec, F. Seguin, and C. Person, “A multi-band stacked RF energy harvester with RF-to-DC e±ciency up to 84%,” IEEE Trans. Microw. Theory Techn., Vol. 63, No. 5, 1768-1778, May 2015.
[120] T. W. Barton, J. M. Gordonson, and D. J. Perreault, “Transmission line resistance compression networks and applications to wireless power transfer,” IEEE J. Emerging Sel. Topics Power Electron., vol. 3, no. 1, pp. 252–260, Mar. 2015.
[121] X. Y. Zhang, Z.-X. Du, and Q. Xue, “High-efficiency broadband rectifier with wide ranges of input power and output load based on branchline coupler,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 3, pp. 731–739, Mar. 2017.
[122] J. Kimionis, A. Collado, M. M. Tentzeris, and A. Georgiadis, “Octave and decade printed UWB rectifiers based on nonuniform transmission lines for energy harvesting,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4326–4334, Nov. 2017
[123] M. M. Mansour, and H. Kanaya, “Compact and broadband RF rectifier with 1.5 octave bandwidth based on a simple pair of L-section matching network,” IEEE Microw. Wireless Compon. Lett.,vol. 28, no. 4, pp. 335-337, april, 2018.
[124] H. Zhang and X. Zhu, “A broadband high efficiency rectifier for ambient RF energy harvesting,” Proc. IEEE MTT-S Int. Microw. Symp., Tampa, FL, USA, pp. 1-3, Jun. 2014.
[125] C. Liu, F. Tan, and Q. He, “A novel single-diode microwave rectifier with a series band-stop structure,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 600–606, Feb. 2017.
[126] K. Fujimori, S.-I. Tamaru, K. Tsuruta, and S. Nogi, “The influences of diode parameters on conversion efficiency of RF-DC conversion circuit for wireless power transmission system,” Proc. Eur. Microw. Conf. (EuMC), pp. 57–60, Oct. 2011.
[127] H. Takhedmit et al., “A 2.45-GHz dual-diode RF-to-DC rectifier for rectenna applications,” Proc. Eur. Microw. Conf. (EuMC), pp. 37–40, Sep. 2010.
[128] C. R. Valenta and G. D. Durgin, “Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field wireless power transfer systems,” IEEE Microw. Mag., vol. 15, no. 4, pp. 108-120, Jun. 2014.
[129] D. M. Pozar, Microwave Engineering, 4th ed., Wiley, Nov. 2011.
[130] K. S. Kumar, Electric Circuits and Networks. New Delhi, India: Pearson Edu., 2009.
[131] P. H. Deng, J. H. Guo, and W. C. Kuo, “New wilkinson power dividers based on compact stepped-impedance transmission lines and shunt open stubs,” Prog. Electromagn. Res., vol. 123, pp. 407–426, 2012.
[132] Y. Shi, Y. Fan, Y. Li, L. Yang, and M. Wang, “An efficient broadband slotted rectenna for wireless power transfer at LTE band,” IEEE Trans. Antennas Propag., vol. 67, no. 2, pp. 814–822, Feb. 2019.
[133] P. Wu et al., “Compact high-efficiency broadband rectifier with multistage-transmission-line matching,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 8, pp. 1316–1320, Aug. 2019.
[134] Y. Wu, J. Wang, Y. Liu, and M. Li, “A novel wideband rectifier design with two-stage matching network for ambient wireless energy harvesting,” Proc. 2018 Prog. Electromagn. Res. Symp. (PIERS-Toyama), Toyama, 2018, pp. 1351-1354.
[135] P. Wu, S. Y. Huang, W. Zhou, and C. Liu, “One octave bandwidth rectifier with a frequency selective diode array,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 11, pp. 1008–1010, Nov. 2018.
[136] Z. He, and C. Liu, “A compact high-efficiency broadband rectifier with a wide dynamic range of input power for energy harvesting,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 4, pp. 433–436, Apr. 2020.
[137] K. Kotani and T. Ito, “High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs,” Proc. ASSCC, Nov. 2007.
[138] M. Stoopman, S. Keyrouz, H. j. Visser, K. Philips, and W. A. Serdijn, “Codesign of a rectifier and small loop antenna for highly sensitive energy haresters,” IEEE J. Solid State Circuits, vol. 49, no. 3, pp. 622-634, Mar. 2014.
[139] R. Ishikawa, T. Yoshida, and K. Honjo, “A 2.4 GHz-band enhancement mode GaAs HEMT rectifier with 19% RF-to-DC efficiency for 1mW input power,” Proc. EUMW, Paris, Oct. 2019.
[140] C. Song, Y. Huang, J. Zhou, Z. Sheng, and P. Carter, “A high efficiency broadband rectenna for ambient wireless energy harvesting,” IEEE Tans. Antennas Propag., vol. 63, no.8, pp.3486-3495, Aug. 2015.
[141] H. Sun, Y.-x. Guo, M. He and Z. Zhong, “A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting,” IEEE Antennas and Wireless Propa. Lett., vol. 12, pp. 918–921, 2013.
[142] V. Kuhn, C. Lahuec, F. Seguin, and C. Person, “A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 5, pp.1768–1778, May 2015.
[143] C K. Niotaki, A. Georgiadis, A. Collado, and J. S. Vardakas, “Dual-band resistance compression networks for improved rectifier performance,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3512 -3521, Dec. 2014.
[144] S.E. Adami, P. Proynov, G. S. Hilton, G.Yang, C. Zhang, D. Zhu, Y. Li, S. P. Beeby, I. J. Craddock, and B. H. Stark, “A flexible 2.45-GHz power harvesting wristband with net system output from -24.3 dBm of RF power,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 380–395, Jan. 2018.
[145] C. Song et al., “Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3950–3961, 2017.
[146] Surface Mount Mixer and Detector Schottky Diodes, Data Sheet. Skyworks Solutions, Inc., Woburn, MA, USA, 2013.
[147] S. Kumar, A. S. Dixit, R. R. Malekar, H. D. Raut, and L. K. Shevada, “Fifth generation antennas: A comprehensive review of design and performance enhancement techniques,” IEEE Access., vol. 8, pp. 163568 - 163593, Sep. 2020.
[148] J. Dyson, “The characteristics and design of the conical log spiral antenna,” IEEE Trans. Antennas Propag., vol. AP-13, no. 4, pp. 488–499, Apr. 1965.
[149] R. DuHamel and F. Ore, “Logarithmically periodic antenna designs,” Proc. IRE Int. Conv. Rec., vol. 6. 1958, pp. 139–151.
[150] S. Choudhury, A. Mohan, and D. Guha, “A new printed log periodic antenna using SIW concept,” Proc. IEEE Indian Conf. Antennas Propag. (InCAP), Hyderabad, India, Dec. 2018, pp. 1–3.
[151] J. Mruk, Z. Hongyu, M. Uhm, Y. Saito, and D. Filipovic, “Wideband mm-wave log-periodic antennas,” Proc. 3rd Eur. Conf. Antennas Propag., Berlin, Germany, 2009, pp. 2584–2587.
[152] S. C. Gao, L. W. Li, M. S. Leong and T. S. Yeo, "Dual-polarized slot-coupled planar antenna with wide bandwidth", IEEE Trans. Antennas Propag., vol. 51, no. 3, pp. 441-448, Mar. 2003.
[153] K. F. Lee, K. M. Luk, K. F. Tong, S. M. Shum, T. Huynh, and R. Q. Lee, “Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna,” IEE Proc.-Microw., Antennas Propag., vol. 144, no. 5, pp. 354–358, Oct. 1997.
[154] C. L. Mak, K. M. Luk, K. F. Lee, and Y. L. Chow, “Experimental study of a microstrip patch antenna with an L-shaped probe,” IEEE Trans. Antennas Propag., vol. 48, no. 5, pp. 777–783, May 2000.
[155] S. Moghaddam, J. Yang, A. A. Glazunov, and A. U. Zaman, “A planar single-polarized ultra-wideband antenna element for millimeter-wave phased array,” Proc. Int. Symp. Antennas Propag. (ISAP), Busan, South Korea, 2018, pp. 1–2.
[156] A. A. Omar and Z. Shen, “Compact and wideband dipole antennas,” Proc. IEEE-APS Topical Conf. Antennas Propag. Wireless Commun. (APWC), Granada, Spain, Sep. 2019, pp. 1–3.
[157] W. D. Ake, M. Pour, and A. Mehrabani, “Asymmetric half-bowtie antennas with tilted beam patterns,” IEEE Trans. Antennas Propag., vol. 67, no. 2, pp. 738–744, Feb. 2019.
[158] G. Vandenbosch, “Reactive energies, impedance, and Q factor of radiating structures,” IEEE Trans. Antennas Propag., vol. 58, no. 4, pp. 1112–1127, Apr. 2010.
[159] K. E. Kedze, H. Wang, and I. Park, “Compact broadband omnidirectional radiation pattern printed dipole antenna incorporated with split-ring resonators,” IEEE Access, vol. 6, pp. 49537–49545, 2018.
[160] R. Wu and Q. X. Chu, “Resonator-loaded broadband antenna for LTE700/GSM850/GSM900 base stations,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 501–504, 2017.
[161] H.-T. Hsu and T.-J. Huang, “Generic dipole-based antenna-featuring dual-band and wideband modes of operation,” IET Microw., Antennas Propag., vol. 6, no. 15, pp. 1623–1628, Dec. 2012.
[162] D. Wen, Y. Hao, H. Wang, and H. Zhou, “Design of a wideband antenna with stable omnidirectional radiation pattern using the theory of characteristic modes,” IEEE Trans. Antennas Propag., vol. 65, no. 5, pp. 2671–2676, May 2017.
[163] K. M. Luk and H. Wong, “A new wideband unidirectional antenna element,” Int. J. Microw. Opt. Technol., vol. 1, no. 1, pp. 2098–2101, Jul. 2006.
[164] K. Wei, Z. Zhang, Z. Feng, and M. F. Iskander, “A wideband MNG-TL dipole antenna with stable radiation patterns,” IEEE Trans. Antennas Propag., vol. 61, no. 5, pp. 2418–2424, May 2013.
[165] Q. X. Chu and Y. Luo, “A broadband unidirectional multi-dipole antenna with very stable beamwidth,” IEEE Trans. Antennas Propag., vol. 61, no. 5, pp. 2847–2852, May 2013.
[166] Y. Luo, Z. Chen, and K. Ma, “Enhanced bandwidth and directivity of a dual-mode compressed high-order mode stub-loaded dipole using characteristic mode analysis,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1922–1925, 2019.
[167] W. Zhang, Y. Li, Z. Zhou, and Z. Zhang, “Dual-mode compression of dipole antenna by loading electrically small loop resonator,” IEEE Trans. Antennas Propag., vol. 68, no. 4, pp. 3243–3247, Apr 2020.
[168] W. J. Lu, L. Zhu, K. W. Tam, and H. B. Zhu, “Wideband dipole antenna using multi-mode resonance concept,” Int. J. Microw. Wireless Technol., vol. 9, no. 2, pp. 365–371, Mar. 2017.
[169] W.-J. Lu and L. Zhu, “A novel wideband slotline antenna with dual resonances: Principle and design approach,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 795–798, 2015.
[170] Y. K. Tan and S. K. Panda, “Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4424-4435, Sept. 2011.
[171] T. Hosseinimehr and A. Tabesh, “Magnetic field energy harvesting from ac lines for powering wireless sensor nodes in smart grids,” IEEE Trans. Ind. Electron., vol. 63, no. 8, pp. 4947-4954, Aug. 2016.
[172] S. Kim et al., “Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms,” Proc. IEEE, vol. 102, no. 11, pp. 1649–1666, Nov. 2014.
[173] B. Strassner and K. Chang, “5.8-GHz circularly polarized dual-rhombic-loop traveling-wave rectifying antenna for low power-density wireless power transmission applications,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1548–1553, 2003.
[174] Q. Awais, Y. Jin, H. T. Chattha, M. Jamil, H. Qiang, and B. A. Khawaja, “A compact rectenna system with high conversion efficiency for wireless energy harvesting,” IEEE Access, vol. 6, pp. 35 857–35 866, 2018.
[175] Y.-J. Ren and K. Chang, “5.8-GHz circularly polarized dual diode rectenna and rectenna array for microwave power transmission,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 4, pp. 1495–1502, 2006.
[176] Y. Yang, L. Li, J. Li et al., “A circularly polarized rectenna array based on substrate integrated waveguide structure with harmonic suppression,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 4, pp. 684–688, 2018.
[177] Y. Yang, J. Li, L. Li et al., “A 5.8 GHz circularly polarized rectenna with harmonic suppression and rectenna array for wireless power transfer,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 7, pp. 1276–1280, 2018.
[178] X. Li, L. Yang, and L. Huang, “Novel design of 2.45-GHz rectenna element and array for wireless power transmission,” IEEE Access, vol. 7, pp. 28356–28362, 2019.
[179] S. Chandravanshi, S. S. Sarma, and M. J. Akhtar, “Design of triple band differential rectenna for RF energy harvesting,” IEEE Trans. Antennas Propag., vol. 66, no. 6, pp. 2716–2726, 2018
[180] H. Sun, Y.-X. Guo, M. He, and Z. Zhong, “A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 918–921, 2013.
[181] K. Niotaki, S. Kim, S. Jeong, A. Collado, A. Georgiadis, and M. M. Tentzeris, “A compact dual-band rectenna using slot-loaded dual-band folded dipole antenna,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1634–1637, 2013.
[182] S. Shen, C.-Y. Chiu, and R. D. Murch, “A broadband L-probe microstrip patch rectenna for ambient RF energy harvesting,” Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, 2017, pp. 2037– 2038.
[183] Z. Liu, Z. Zhong, and Y. Guo, “High-efficiency triple-band ambient RF energy harvesting for wireless body sensor network,” Proc. IEEE MTT-S Int. Microw. Workshop Ser. RF Wireless Techn. Biomed. Healthcare Appl., 2014, pp. 1–3.
[184] S. Chandravanshi, S. S. Sarma, and M. J. Akhtar, “Design of triple band differential rectenna for RF energy harvesting,” IEEE Trans. Antennas Propag., vol. 66, no. 6, pp. 2716–2726, Jun. 2018.
[185] V. Kuhn, C. Lahuec, F. Seguin, and C. Person, “A multi-band stacked rf energy harvester with RF-to-DC efficiency up to 84%,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 5, pp. 1768–1778, 2015.
[186] S. Shen, Y. Zhang, C. Chiu and R. Murch, “An ambient RF energy harvesting system where the number of antenna ports is dependent on frequency,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 9, pp. 3821–3832, Sept. 2019.
[187] U. Olgun, C.-C. Chen, and J. L. Volakis, “Design of an efficient ambient WiFi energy harvesting system,” IET Microw. Antennas Propag., vol. 6, no. 11, pp. 1200–1206, Nov. 2012.
[188] X. Zhang et al., “Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting,” Nature, vol. 566, pp. 368–372, Jan. 2019.
[189] C. Song et al., “Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3950–3961, 2017.
[190] E. Vandelle, D. H. N. Bui, T. Vuong, G. Ardila, K. Wu and S. Hemour, “Harvesting ambient RF energy efficiently with optimal angular coverage,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1862-1873, Mar. 2019.
[191] C. Song, P. Lu and S. Shen, “Highly Efficient Omnidirectional Integrated Multi-Band Wireless Energy Harvesters for Compact Sensor Nodes of Internet-of-Things,” IEEE Trans. Ind. Electron., early access article, Jul. 2020.
[192] P. Zhang, H. Yi, H. Liu, H. Yang, G. Zhou and L. Li, “Back-to-Back Microstrip Antenna Design for Broadband Wide-Angle RF Energy Harvesting and Dedicated Wireless Power Transfer,” IEEE Access, vol. 8, pp. 126868-126875, 2020.
[193] C. Song, Y. Huang, P. Carter, J. Zhou, S. Yuan, Q. Xu, and M. Kod, “A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 3160–3171, Jul. 2016.
[194] Y. K. Tan and S. K. Panda, “Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4424-4435, Sep. 2011.
[195] N. B. Carvalho et al., “Wireless power transmission: R&D activities within Europe,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 4, pp. 1031-1045, Apr. 2014.
[196] B. Strassner and K. Chang, “Microwave power transmission: Historical milestones and system components,” Proc. IEEE, vol. 101, no. 6, pp. 1379-1396, Jun. 2013.
[197] L. R. Varshney, “Transporting information and energy simultaneously,” Proc. IEEE Int. Symp. Inf. Theory, Toronto, ON, Canada, Jul. 2008, pp. 1612-1616.
[198] L. Liu, R. Zhang, and K.-C. Chua, “Wireless information transfer with opportunistic energy harvesting,” IEEE Trans. Wireless Commun., vol. 12, no. 1, pp. 288-300, Jan. 2013.
[199] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with energy harvesting nodes in fading wireless channels: Optimal policies,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732-1743, Sep. 2011.
[200] B. Clerckx, R. Zhang, R. Schober, D. W. K. Ng, D. I. Kim and H. V. Poor, “Fundamentals of Wireless Information and Power Transfer: From RF Energy Harvester Models to Signal and System Designs,” IEEE J. Sel. Areas Commun., vol. 37, no. 1, pp. 4-33, Jan. 2019.
[201] J. P. Curty, N. Joehl, F. Krummenacher, C. Dehollain and M. J. Declercq, “A model for u-power rectifier analysis and design,” IEEE Trans. Circuits Syst., vol. 52, no. 12, pp. 2771-2779, Dec. 2005.
[202] Surface Mount Mixer and Detector Schottky Diodes Data Sheet, 2013.
[203] F. Zhao, Z. Li, G. Wen, J. Li, D. Inserra and Y. Huang, “A compact high-efficiency watt-level microwave rectifier with a novel harmonic termination network,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 6, pp. 418-420, June 2019.
[204] C. Song et al., “Novel compact and broadband frequency-selectable rectennas for a wide input-power and load impedance range,” IEEE Trans. Antennas Propag, vol. 66, no. 7, pp. 3306-3316, Jul. 2018.
[205] J. Zbitou, M. Latrach and S. Toutain, “Hybrid rectenna and monolithic integrated zero-bias microwave rectifier,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp. 147-152, Jan. 2006.
[206] Y. Xu and R. G. Bosisio, “Design of Multiway Power Divider by Using Stepped-Impedance Transformers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 9, pp. 2781-2790, Sept. 2012.
[207] S. Kim, S. Jeon and J. Jeong, “Compact Two-Way and Four-Way Power Dividers Using Multi-Conductor Coupled Lines,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 3, pp. 130-132, March 2011.
[208] C. Liou, M. Lee, S. Huang and S. Mao, “High-Power and High-Efficiency RF Rectifiers Using Series and Parallel Power-Dividing Networks and Their Applications to Wirelessly Powered Devices,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 616-624, Jan. 2013.
[209] U. Olgun, C. Chen and J. L. Volakis, “Investigation of Rectenna Array Configurations for Enhanced RF Power Harvesting,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 262-265, 2011.
[210] H. T. Nia and V. Nayyeri, “A 0.85–5.4 GHz 25-W GaN Power Amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 3, pp. 251-253, March 2018.
[211] A. Hassan, Y. Savaria and M. Sawan, “GaN Integration Technology, an Ideal Candidate for High-Temperature Applications: A Review,” IEEE Access, vol. 6, pp. 78790-78802, 2018.
[212] T. H. Hong et al., “Packaging Approach for Integrating 40/45-nm ELK Devices into Wire Bond and Flip-Chip Packages,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 1, no. 12, pp. 1923-1933, Dec. 2011.
[213] L. Lin et al., “Ruggedness Characterization of Bonding Wire Arrays in LDMOSFET-Based Power Amplifiers,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 8, no. 6, pp. 1032-1041, June 2018.
[214] A. M. Almohaimeed, M. C. E. Yagoub and R. E. Amaya, “A highly efficient power harvester with wide dynamic input power range for 900 MHz wireless power transfer applications,” Proc. MMS, Abu Dhabi, 2016, pp. 1-4.
[215] M. Huang et al., “Single- and Dual-Band RF Rectifiers with Extended Input Power Range Using Automatic Impedance Transforming,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 5, pp. 1974-1984, May 2019.
[216] Y. Cao, W. Hong, L. Deng, S. Li and L. Yin, “A 2.4 GHz Circular Polarization Rectenna with Harmonic Suppression for Microwave Power Transmission,” Proc. IEEE Int. Conf. Internet Things, IEEE Green Comput. Commun., IEEE Cyber, Phys. Social Comput., IEEE Smart Data, Chengdu, 2016.
[217] Z. Liu, Z. Zhong and Y. Guo, “Enhanced Dual-Band Ambient RF Energy Harvesting with Ultra-Wide Power Range,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 9, pp. 630-632, Sept. 2015.
[218] M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, “From today’s INTRAnet of things to a future INTERnet of things: A wireless-and mobility-related view,” IEEE Wireless Commun., vol. 17, no. 6, pp. 44-51, Dec. 2010.
[219] M. Tabesh, N. Dolatsha, A. Arbabian, and A. Niknejad, “A power-harvesting pad-less millimeter-sized radio,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 962-977, Apr. 2015.
[220] M. Pinuela, P. D. Mitcheson, and S. Lucyszyn, “Ambient RF energy harvesting in urban and semi-urban environments,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2715-2726, Jul. 2013.
[221] C. Song, Y. Huang, J. Zhou, J. Zhang, S. Yuan, and P. Carter, “A High-Efficiency Broadband Rectenna for Ambient Wireless Energy Harvesting,” IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3486-3495, Aug. 2015.
[222] S. Ladan, A. B. Guntupalli, and W. Ke, “A high-efficiency 24 GHz rectenna development towards millimeter-wave energy harvesting and wireless power transmission,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 61, no. 12, pp. 3358-3366, Dec. 2014.
[223] S. D. Joseph, Y. Huang, S. Hsu, M. Stanley, and C. Song, “A novel dual-polarized millimeter-wave antenna array with harmonic rejection for wireless power transmission,” Proc. Eur. Conf. Antennas Propag., London, 2018, pp. 1-3.
[224] D. Masotti, A. Costanzo, M. Del Prete, and V. Rizzoli, “Time-modulation of linear arrays for real-time reconfigurable wireless power transmission,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 331-342, Feb. 2016.
[225] Z. A. Pour, L. Shafai, and B. Tabachnick, “A practical approach to locate offset reflector focal point and antenna misalignment using vectorial representation of far-field radiation patterns,” IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 991–996, Feb. 2014.
[226] H. Zhang, Y. X. Guo, S. P. Gao, and W. Wu, “Wireless power transfer antenna alignment using third harmonic,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 6, pp. 536–538, Jun. 2018.
[227] S. N. Daskalakis, J. Kimionis, A. Collado, G. Goussetis, M. M. Tentzeris, and A. Georgiadis, “Ambient backscatters using FM broadcasting for low cost and low power wireless application,” IEEE Trans. Microw. Theory Techn., vol. 65, no.2, Dec 2017.
[228] T. H. Lin, J. Bito, J. G. D. Hester, J. Kimionis, R. A. Bahr, and M. M. Tentzeris, “On-body long-range wireless backscattering sensing system using inkjet/3D-printed flexible ambient RF energy harvesters capable of simultaneous DC and harmonics generation,” IEEE Trans. Microw. Theory Techn., vol. 65, no.2, Dec 2017.
[229] M. Roberg, T. Reveyrand, I. Ramos, E. A. Falkenstein, and Z. Popović, “High-efficiency harmonically terminated diode and transistor rectifiers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 12, pp. 4043–4052, Dec. 2012.
[230] J. Guo, H. Zhang, and X. Zhu, “Theoretical analysis of RF-DC conversion efficiency for class-F rectifiers,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 4, pp. 977–985, Apr. 2014.
[231] S. Ladan and K. Wu, “Nonlinear modeling and harmonic recycling of millimeter-wave rectifier circuit,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 3, pp. 937–944, Mar. 2015.
[232] D. Allane, G. A. Vera, Y. Duroc, R. Touhami, and S. Tedjini, “Harmonic power harvesting system for passive RFID sensor tags,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 7, pp. 2347–2356, Jul. 2016.
[233] T. Mitani, S. Kawashima, and N. Shinohara, “Experimental Study on a Retrodirective System Utilizing Harmonic Reradiation from Rectenna, ” IEICE Trans. Electron., vol. E102.C, no. 10, pp. 666-672, Oct. 2019.
[234] N. Decarli, M. Del Prete, D. Masotti, D. Dardari, and A. Costanzo, “High-accuracy localization of passive tags with multisine excitations,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, pp. 5894–5908, Dec. 2018.
[235] C. J. Peng, S. F. Yang, A. C. Huang, T. H. Huang, P. J. Chung, and F. M. Wu, “Harmonic enhanced location detection technique for energy harvesting receiver with resonator coupling design,” Proc. IEEE Wireless Power Transf. Conf. (WPTC), May 2017, pp. 1–3.
[236] H. Zhang, Y. X. Guo, S. P. Gao, Z. Zhong, and W. Wu, “Exploiting third harmonic of differential charge pump for wireless power transfer antenna alignment,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 1, pp. 71–73, Jan. 2019.
[237] T. Ngo, and T. Yang, “Harmonic-recycling Rectifier Design for Localization and Power Tuning,” Proc. IEEE Wireless Power Transf. Conf. (WPTC), Montreal, QC, Canada, 2018, pp. 1-4.
[238] C. A. Balanis, “Antenna Theory: Analysis, and Design, 3rd ed,” Hoboken, NJ, USA: Wiley, 2005.
[239] R. Ludwig and P. Bretchko, “RF Circuit Design: Theory and Applications,” Englewood Cliffs, NJ, USA: Prentice-Hall, 2000, pp. 210–220.
[240] J. Chen, J. Ludwig, and S. Lim, “Design of a compact log-periodic dipole array using T-shaped top loadings,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1585–1588, 2017.
[241] D. F. Sievenpiper et al., “Experimental validation of performance limits and design guidelines for small antennas,” IEEE Trans. Antennas Propag., vol. 60, no. 1, pp. 8–19, Jan. 2012.
[242] C. X. Mao, S. Gao, Y. Wang, F. Qin and Q. X. Chu, “Compact highly integrated planar duplex antenna for wireless communications,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 7, pp. 2006–2013, Jul. 2016.
[243] C. X. Mao, S. Gao and Y. Wang, “Dual-Band Full-Duplex Tx/Rx Antennas for Vehicular Communications,” IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4059–4070, May.2018.
[244] R. Ibrahim et al., “Novel design for a rectenna to collect pulse waves at 2.4 GHz,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 357-365, Jan. 2018.
[245] C. R. Valenta and G. D. Durgin, “Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field wireless power transfer systems,” IEEE Microw. Mag., vol. 15, no. 4, pp. 108-120, Jun. 2014.
[246] D. M. Pozar, Microwave Engineering. Hoboken, NJ, USA: Wiley, 2009.
[247] Y. Suh and K. Chang, “A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 7, pp. 1784-1789, July 2002.