研究生: |
蔡宗樺 Tsai, Tzung-Hua |
---|---|
論文名稱: |
差動傳送參考系統在具符際干擾超寬頻通道之效能分析 Performance Analysis of Differential Transmitted-Reference Systems over Ultra-Wideband Channels with Intersymbol Interference |
指導教授: |
趙啟超
Chao, Chi-chao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | 超寬頻 、差動傳送參考 、自相關接收機 、訊號干擾雜訊比 |
外文關鍵詞: | ultra-wideband, differential transmitted-reference, autocorrelation receiver, signal-to-interference-plus-noise ratio |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超寬頻系統(Ultra Wideband System, UWB System)的特色是將訊號於極大的頻寬下進行傳輸。此特性能讓整個系統在使用低功率下,就有極高的資料傳輸速率。此外,超寬頻系統也提供了其他好處,例如能與其他系統共存於相同頻帶,極佳的時間解析度,和有效對抗多重路徑通道的信號衰退。
然而,因為超寬頻通道模型的分析不易,在先前的相關研究中大多使用簡化的通道模型,或是在通道模型的分析上以電腦模擬取代。此外,先前的研究裡多半假設符號區間夠大,以忽略符際干擾(Intersymbol Interference, ISI)所帶來的影響。但是這樣的假設和需求更高的傳輸速率是互相衝突的。
在本論文中,我們將在IEEE 802.15.3a的超寬頻通道模型下精確分析差動傳送參考(Differential Transmitted-Reference, DTR)系統的訊號干擾雜訊比(Signal-to-Interference-Plus-Noise Ratio, SINR),並且考慮符際干擾所造成的影響。根據這些的精確分析,我們將探討在不同符號區間下得到最高的信號干擾雜訊比所需要的最理想積分時間。我們將發現這些最理想積分時間有一些特別的現象,而這些現象是在考慮符際干擾後才會出現的。基於這些特別的現象,我們提出了一個通用的積分規則。這個積分規則相當的簡單。而且利用這個規則,我們可以使系統得到趨近最理想的訊號干擾雜訊比。相較於先前的研究,我們提供了一個更加有效率,並且有深刻見解的方法來進行接收端的分析與最佳化。
The UWB system is a promising technology that can provide high-data rate and robustness to multipath fading. However, because of the difficulty in analyzing the UWB channel models adopted by the IEEE UWB 802.15.3a Task Group, previous analytical works regarding transmitted-reference systems are based on simplified channel models or computer simulations. Besides, the symbol duration is assumed to be sufficiently large so that the effect of intersymbol interference (ISI) can be ignored.
In this thesis, the exact evaluation of the signal-to-interference-plus-noise ratio for differential transmitted-reference systems over the IEEE 802.15.3a channel structure is derived regarding the effect of ISI. A simplified formula is also provided for ease of the following system analysis. In particular, the optimal integration time for different symbol durations and channel models is studied. Some special phenomena due to ISI and a universal rule to approach the maximum SINR can hence be characterized. Compared with the previous methodology, our analytical results provide a more efficient and insightful way to receiver design and optimization.
[1] R. A. Scholtz, “Multiple access with time-hopping impulse modulation” in Proc. IEEE
Military Commun. Conf., Boston, MA, Oct. 1993, pp. 447–450.
[2] M. Z. Win and R. A. Scholtz, “Impulse radio: how it works,” IEEE Commun. Lett.,
vol. 2, pp. 36–38, Feb. 1998.
[3] ——, “On the robustness of ultra-wide bandwidth signals in dense multipath environments,”
IEEE Commun. Lett., vol. 2, pp. 51–53, Feb. 1998.
[4] ——, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless
multiple-access communications,” IEEE Trans. Commun., vol. 48, pp. 679–689, Apr.
2000.
[5] R. A. Scholtz, R. Weaver, E. Homier, J. Lee, P. Hilmes, A. Taha, and R. Wilson, “UWB
radio deployment challenges,” in Proc. IEEE Int. Symp. Personal, Indoor and Mobile
Radio Commun., London, UK, Sep. 2000, pp. 620–625.
[6] F. Ramirez-Mireles, “Performance of ultrawideband SSMA using time hopping and Mary
PPM,” IEEE J. Sel. Areas Commun., vol. 19, pp. 1186–1196, June 2001.
[7] “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission
systems,” Federal Comunications Commission, FCC First Report and Order, ET-Docket
98–153, Feb. 2002.
[8] R. Fisher et al., “DS-UWB physical layer submission to 802.15 task group 3a,” IEEE
doc.: IEEE P802.15-04/0137r3, Jul. 2004.
[9] A. Batra et al., “Multi-band OFDM physical layer proposal for IEEE 802.15 task group
3a,” IEEE doc.: IEEE P802.15-03/268r3, Mar. 2004.
[10] R. Hoctor and H. Tomlinson, “Delay-hopped transmitted-reference RF communications,”
in Proc. IEEE Conf. Ultra-Wideband Systems Technol., Baltimore, MD, May
2002, pp. 265–269.
[11] J. D. Choi and W. E. Stark, “Performance of ultra-wideband communications with
suboptimal receivers in multipath channels,” IEEE J. Sel. Areas Commun., vol. 20, pp.
1754–1766, Dec. 2002.
[12] M. Ho, V. Somayazulu, J. Foerster, and S. Roy, “A differential detector for an ultrawideband
communications system,” in Proc. IEEE Veh. Technol. Conf., Birmingham,
AL, May 2002, pp. 1896–1900.
[13] A. Rabbachin and I. Oppermann, “Comparison of UWB transmitted reference schemes,”
IEE Proc. Commun., vol. 153, pp. 136–142, Feb. 2006.
[14] Q. H. Dang, A. Trindade, A.-J. van der Veen, and G. Leus, “Signal model and receiver
algorithms for a transmit-reference ultra-wideband communication system,” IEEE J.
Sel. Areas Commun., vol. 24, pp. 773–779, Apr. 2006.
[15] Y.-L. Chao, “Optimal integration time for UWB transmitted reference correlation receivers,”
in Proc. Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, Nov. 2004,
pp. 647–651.
[16] T. Q. S. Quek and M. Z. Win, “Analysis of UWB transmitted-reference communication
systems in dense multipath channels,” IEEE J. Sel. Areas Commun., vol. 23, pp. 1863–
1874, Sept. 2005.
[17] M. Pausini and G. J. M. Janssen, “Performance analysis of UWB autocorrelation receivers
over Nakagami-fading channels,” IEEE J. Sel. Topics Signal Process., vol. 1, pp.
443–455, Oct. 2007.
[18] T. Jia and D. I. Kim, “Analysis of channel-averaged SINR for indoor UWB Rake and
transmitted reference systems,” IEEE Trans. Commun., vol. 55, pp. 2022–2032, Oct.
2007.
[19] Y. Na and M. Saquib, “Analysis of the channel energy capture in ultra-wideband transmitted
reference systems,” IEEE Trans. Commun., vol. 55, pp. 262–265, Feb. 2007.
[20] K. Witrisal, M. Pausini, and A. Trindade, “Multiuser interference and inter-frame interference
in UWB transmitted reference systems,” in Proc. Int. Workshop Ultra-Wideband
Syst. Joint with Conf. Ultra-Wideband Syst. and Technol., Kyoto, Japan, May 2004, pp.
96-100.
[21] K. Witrisal, G. Leus, and M. Pausini, “Equivalent system model and equalization of
a differential impulse radio UWB system,” IEEE J. Sel. Areas Commun., vol. 23, pp.
1851-1862, Sep. 2005.
[22] W.-D. Wu, C.-C. Lee, C.-H. Wang, and C.-C. Chao, “Signal-to-interference-plusnoise
ratio analysis for direct-sequence ultra-wideband systems in generalized Saleh-
Valenzuela channels,” IEEE J. Sel. Topics Signal Process., vol. 1, pp. 483–497, Oct.
2007.
[23] C.-H. Hsieh, “Performance analysis of transmitted-reference ultrawideband communication
systems,” M.S. thesis, Inst. Commun. Eng., Nat. Tsing Hua Univ., Hsinchu,
Taiwan, R.O.C., 2009.
[24] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,”
IEEE J. Sel. Areas Commun., vol. 5, pp. 128–137, Feb. 1987.
[25] J. Foerster, et al., “Channel modeling sub-committe report final,” IEEE doc.: IEEE
P802.15-02/490r1-SG3a, Feb. 2003.
[26] A. F. Molisch, J. R. Foerster, and M. Pendergrass, “Channel models for ultrawide-band
personal area networks,” IEEE Wireless Commun., vol. 10, pp. 14–21, Dec. 2003.
[27] A. F. Molisch, et al., “IEEE 802.15.4a channel model - Final report,” IEEE doc.: IEEE
802.15-04-0662-02-004a, 2005.
[28] A. F. Molisch, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal,
J. Kunisch, H. G. Schantz, K. Siwiak, and M. Z. Win, “A comprehensive standardized
model for ultrawideband propagation channels,” IEEE Trans. Antennas Propagat., vol.
54, pp. 3151–3166, Nov. 2006.
[29] S. M. Ross, Stochastic Processes. New York: Wiley, 1996.
[30] E. P. C. Kao, An Introduction to Stochastic Processes. Belmont, CA: Duxbury, 1997.
[31] Y.-L. Chao, “Ultra-wideband radios with transmitted reference methods,” Ph.D. dissertation,
Dept. Elec. Eng., Univ. of Southern California, Los Angeles, 2005.
[32] J.-Y. Chang, W.-D. Wu, and C.-C. Chao, “An analytical framework for ultra-wideband
communications over IEEE 802.15.4a channels,” in Proc. IEEE Int. Symp. Inf. Theory,
Toronto, Canada, Jul. 2008, pp. 2757-2761.
[33] M.A. Nemati and R.A. Scholtz, “A diffusion model for UWB indoor propagation,” in
Proc. IEEE Military Commu. Conf., Monterey, CA, Oct. 2004, pp. 140-145.