簡易檢索 / 詳目顯示

研究生: 林世峰
Shih-Fong Lin
論文名稱: 利用有效的光學共振器激發表面電漿-研究製備含金奈米顆粒的氧化鋅奈米線及其發光性質
Surface Plasma Excited by Active Resonators-The study of fabricating ZnO nanowires with gold nanoparticles & their photoluminescence properties
指導教授: 嚴大任
Ta-Jen Yen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 93
中文關鍵詞: 氧化鋅奈米線表面增強拉曼散射金奈米顆粒紫外光綠光
外文關鍵詞: ZnO nanowires, SERS, Gold nanoparticles, UV emission, Green emission
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用有效的光學共振器激發表面電漿
    -研究製備含金奈米顆粒的氧化鋅奈米線及其發光性質


    Zinc oxide is a unique material with semiconducting and piezoelectric properties. The most attractive characteristic of Zinc oxide is the optical properties which will open up a lot of applications in optoelectronics. Zinc oxide is a semiconductor material with a large direct bandgap (3.37ev)which is believed to have more light emission efficiency and can realize in UV nanolaser.
    Surface-enhanced Raman scattering (SERS), a spectroscopic technique combining novel laser with the galvanizing optical properties of metallic nanostructures, emerges as a crucial methodology for the study of single molecular detection which becomes a compelling topic currently in various disciplines such as nanostructured materials, medicines, biophysics/biochemistry, molecular biology, pharmacology, and environmental science. The ultrasensitive SERS signals stem from the extraordinary enhancement of localized electromagnetic field by attaching molecules on nanoscale metal surface to enable the excitation of surface plasma.
    In this thesis, ZnO nanowires were grown on sapphire substrates in a horizontal furnace via VLS process. Optimum process parameters of fabricating ZnO nanowires with gold tips were proposed including growth temperature, chamber pressure, and growth time duration. Characterization and analysis of ZnO nanowires were discussed with many analytic techniques. Photoluminescence spectra (PL) were obtained to show UV emission and green emission of ZnO nanowires and the intensity of green emission largely depends on the length of ZnO nanowire.

    □ Table of Content------------------------------------------------------------------------Ⅰ □ List of Tables---------------------------------------------------------------------------Ⅳ □ List of Figures--------------------------------------------------------------------------Ⅴ □ Acknowledgements-------------------------------------------------------------------Ⅸ □ Abstract ---------------------------------------------------------------------------------Ⅹ Chapter.1 Introduction to Nanotechnology 1-1 Nanotechnology--------------------------------------------------------1 1-2 1-D nanomaterials------------------------------------------------------1 1-3 The mechanism of synthesizing nanowires--------------------------3 1-3-1 Vapor-Liquid-Solid mechanism-------------------------------------3 1-3-2 Solution growth mechanism-----------------------------------------6 1-3-3 Oxide-Assisted Growth mechanism--------------------------------8 1-4 The application of nanowires------------------------------------------10 Chapter.2 Overview of ZnO nanowire-----------------------------------------------------15 2-1 ZnO properties------------------------------------------------------------15 2-1-1 Crystal structure of ZnO-----------------------------------------------15 2-1-2 Optical properties of ZnO nanowires--------------------------------19 A. Photoluminescence--------------------------------------------------19 B.Laser Action from ZnO nanowires---------------------------------21 2-2 Fabrication of ZnO nanowires-------------------------------------------27 2-2-1 Thermal evaporation --------------------------------------------------27 2-2-2 Pulsed laser deposition-------------------------------------------------31 2-2-3 Chemical vapor deposition(CVD)------------------------------------34 2-3 Patterned growth of ZnO nanowires-----------------------------------36 2-4 Textured seed growth of ZnO nanowires------------------------------39 Chapter.3: Overview of Raman scattering&SERS---------------------------------------41 3-1 Raman scattering-----------------------------------------------------------41 3-2 Surface Enhancement of Raman scattering-----------------------------46 3-3 The enhancement of Raman scattering----------------------------------- 46 3-3-1 Electromagnetic effect--------------------------------------------------47 3-3-2 Chemical effect----------------------------------------------------------49 Chapter.4: Experiment Procedures--------------------------------------------------------51 4-1 Preparation and treatment of substrate----------------------------------51 4-2 Synthesis of ZnO nanowires----------------------------------------------52 4-3 Analysis and characterization of ZnO nanowires----------------------56 4-3-1 Scanning Electron Microscope Observation-------------------------56 4-3-2 X-Ray Diffractometry (XRD)------------------------------------------58 4-3-3 Photoluminescence measurement (PL)-------------------------------58 4-3-4 Energy Dispersive Spectrometer (EDS) Analysis-------------------58 4-3-5 Transmission Electron Microscope Observation--------------------60 Chapter.5:Results&Discussion--------------------------------------------------------------62 5-1 Optimum Experiment Parameters----------------------------------------62 5-1-2 Optimum Chamber Pressure Condition-------------------------------66 5-1-3 Optimum growth time duration---------------------------5-2 .Analysis and Characterization of ZnO Nanowire-----------------72 5-2-1 X-ray Diffraction Result--------------------------------------------72 5-2-2 TEM Images of ZnO Nanowires-----------------------------------72 5-2-3 Observation of Gold Nanoparticle on ZnO Nanowire---------- 73 5-3 Observation of Preferred Orientation-------------------------------- 78 5-4 Influence of Oxygen Flow Rate-------------------------------------- 81 5-5 Photoluminescence Measurement of ZnO Nanowires------------ 83 Chapter .6 Conclusion&Future work-------------------------------------------------- 88 Reference--------------------------------------------------------------------- 89

    1.Nanotech thinks big,NATURE,VOL 405 ,15 JUNE, 2000 ,www.nature.com
    2.SHIHAI KAN, TALEB MOKARI, ELI ROTHENBERG AND URI ANIN,Nature materials VOL 2 , MARCH 2003,
    3.David Katz,TommerWizansky,and Oded Millo*,Physical Review Letters, Volume 89,Number8,19 August 2002.
    4.J. T. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 1999, 32, 435.
    5.Y. Wu, P. Yang, Chem. Mater. 2000, 12, 605.
    6.C. C. Chen, C. C. Yeh, Adv. Mater. 2000, 12, 738.
    7.Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, X. Z. Gai, Q. L. Hang, G. C.Xiong, S. Q. Feng, Chem. Phys. Lett. 1999, 303, 311.
    8.M. Terrones, N. Grobert, J. Olivares, J. P. Zhang,H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare,P. D. Townsend, K. Prassides, A. K. Cheetham,H. W. Kroto& D. R. M. Walton,NATURE,VOL 388, 3 JULY 1997
    9.J.H. Hwang, W-K Hsu, C.Y. Mou, Adv. Mater , 5 , 643 (1993).
    10.W-K Hsu , J.P. Hare, M. Terrones, H.W. Kroto, D.R.M. Walton, P.J.F. Harris, Nature, 377 , 687 (1995).
    11.Rusen Yang and Zhong Lin Wang,J. AM. CHEM. SOC. 2006, 128, 1466-1467
    12.Surajit Kumara,∗, Swaminathan Rajaraman a, Rosario A. Gerhardt b,Zhong Lin Wang b, Peter J. Hesketh, S. Kumar et al. / Electrochimica Acta 51 (2005) 943–951
    13.J.T.Hu,T.W.Qdom,and C.Lieber,acc.Chem.Res.32,435(1999)
    14.Y.Wu and P.Yang,Chem.Mater.12,605(2000)
    15.M.Yazawa,M.Koguchi,A.Muto,M.Qzawa,R.P.H.Chang,Phys.Rev.Lett.82,2278(1999)
    16.X.Duan and C.M Lieber,J.Am.Chem.Soc.122,8801(2000)
    17.Adrian Bachtold,* Peter Hadley, Takeshi Nakanishi, Cees Dekker, Science ,294, 9 (2001)
    18.Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker, Nature, 393 ,49(1998)
    19.Henk W. Ch. Postma, Tijs Teepen, Zhen Yao,* Milena Grifoni,Cees Dekker, Science, 293,77(2001)
    20.Wired for success, Nature,419,553(2002)
    21Y. Wu, P. Yang, Chem. Mater. 2000, 12, 605.
    22. C. C. Chen, C. C. Yeh, Adv. Mater. 2000, 12, 738.
    23. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, X. Z. Gai, Q. L. Hang, G. C.
    Xiong, S. Q. Feng, Chem. Phys. Lett. 1999, 303, 311.
    24.M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma, Appl. Phys.
    25.X. F. Duan, C. M. Lieber, Adv. Mater. 2000, 279, 208.
    26. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons,
    W. E. Buhro, Science 1995, 270, 1791.
    27. J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science 2000, 287,
    1471.
    28.R.S Wagner and W.C.Ellis,Appl.Phys.Lett,4,89(1964)
    29. Yiying Wu and Peidong Yang, J. Am. Chem. Soc, 123, 3165(2001)
    30. T.J.Trentler,K.M.Hickman,S.C.Goel,A.M.Viano,P.C.Gibbons and W.E.Buhro, Science,270,1791(1995)
    31.X.Lu,T.Hanrath,K.P.Johnston and B.A.Korgel,Nano Lett,3,93(2003)
    32.S.T.Lee,N.Wang and C.S.Lee,Mater.Sci.Eng. A 286,16(2000)
    33.N.Wang,Y.H.Tang,Y.F.Zhang,C.S.Lee,I.Bello and S.T.Lee.Phys.Lett.299,237 (1999).
    34.Yi.Cui,Charles.M.Lieber,Science,291,851(2001)
    35.Xiangfeng Duan,Yu Huang,Yi Cui,Jianfang Wang and Charles M. Lieber,Nature,409,66(2001)
    36.Mark S.Gudiksen,Licoln J.Lauhon,Jianfang Wang and Charles M.Lieber,Nature,415,617(2002)
    37.Yi Cui,Qingqiao Wei,Hongkun Park and Charles M.Lieber,Science,291,630(2001)
    38.Matt Law,Hannes Kind,Benjamin Messer,Franklin Kim and Peidong Yang,Angew.Chem.Int.Ed,41,2405(2002)
    39.Zhong Lin Wang,materialtoday,June (2004)
    40. William L. Hughes and Zhong L. Wang, J. AM. CHEM. SOC, 126, 6703-6709(2004)
    41.Zhong Lin Wang, J. Phys.: Condens. Matter 16 ,R829–R858(2004)
    42. H. Cao et al., Phys. Rev. Lett. 84, 5584 (2000).
    43. D. M. Bagnall et al., Appl. Phys. Lett. 70, 2230 (1997).
    44.P. Yu et al., J. Cryst. Growth 184/185, 601 (1998).
    45.Peidong Yang,Haoquan Yan,Samuel Mao,Richard Russo,Justin,Richard Saykally,
    Nathan Morris,Johnny Pham,Rongrui He,and Heon-Jin Choi,Adv.Funct. Mater,12,5(2002)
    46.K.Vanheusden,W.L.Warren,C.H.Seager,D.R.Tallant,J.A.Voigt,B.E.Gnage,J.Appl.Phys,79,7983(1996)
    47.Michael H.Huang,Samuel Mao,Henning Feick,Haoquan Yan,Yiying Wu,Hannes Kind,Eicke weber,Richard Russo,Peidong Yang,Science,292,1987(2001)
    48.Hsu-Cheng Hsu,Chun-Yi Wu, and Wen-Feng Hsieh,Journal of Applied Physics 97,064315(2005)
    49.Michael H.Huang,Yiying Wu,Henning Ferick,Ngan Tran,Eicke
    Weber,and Peidong Yang,Adv.Mater,13,2(2001)
    50.Alfredo.M.Morales and Charles M.Lieber,Science,279,209(1998)
    51.Jih-Jen Wu and Sai-Chang Liu,Adv.Mater,14,3(2002)
    52. X. D. Wang, C. J. Summers and Z. L. Wang, Nano Letters, 4 ,423(2004)
    53.Lori E.Greene,Matt Law,Dawud H.Tan,Max Montano,Josh Goldberger,Gabor Somorjai,and Peidong Yang,Nano Letters,5,7,1231(2005)
    54. Katrin Kneipp1, Harald Kneipp, Irving Itzkan, Ramachandra R Dasari
    and Michael S Feld, J. Phys.: Condens. Matter 14 ,R597–R624(2002)
    55.Shuming Nie and Steven R.Emory,Science,275,1102(1997)
    56. Fleischman M, Hendra P J and McQuillan A J ,Chem. Phys. Lett 26 123(1974)
    57. Seki H J 1986 J. Electron Spectrosc. Relat. Phenom. 39 239
    58.Katrin Kneipp, Yang Wang,* Harald Kneipp,† Lev T. Perelman, Irving Itzkan,
    Ramachandra R. Dasari, and Michael S. Feld, Phys.Rev.Lett,78,9(1997)
    59. F. J. Garcia-Vidal and J. B. Pendry, Phys. Rev. Lett. 77,1163 (1996).
    60. Xu H X, Aizpurua J, Kall M and Apell P 2000 Phys. Rev. E 62 4318
    61. Otto A 1984 Surface-enhanced Raman scattering: ‘classical’ and ‘chemical’ origins Light Scattering in Solids IV. Electronic Scattering, Spin Effects, SERS and Morphic Effects edMCardona and G Guntherodt (Berlin:Springer) p 289
    62. Otto A, Mrozek I, Grabhorn H and Akemann W 1992 J. Phys.: Condens. Matter 4 1143
    63. Campion A and Kambhampati P 1998 Chem. Soc. Rev. 27 241
    64. Kambhampati P, Child C M, Foster M C and Campion A 1998 J. Chem. Phys. 108 5013
    65.郭昆樺,國立清華大學材料科學工程學系碩士論文(2004)

    66. Okamoto et al, Phase Diagrams of Binary Gold Alloy, ASM International, Metals Park,Ohio (1987)
    67.D Banerjee,J Y Lao,D Z Wang,J Y Huang,D Steeves,B Kimball and Z F Ren,Nanotechnology,15,404(2004)
    68.K.Vanheusden,W L Warren,C H Seager,D R Tallant,J A Viogt,B E Gnage,J.Appl.Phys,79,7983(1996)
    69. 何志浩,國立清華大學材料科學工程學系博士論文(2005)

    ,

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE