簡易檢索 / 詳目顯示

研究生: 林永昌
Lin, Yung-Chang
論文名稱: 原子級潔淨之懸空石墨烯光學特性
Optical Properties of Atomic Clean Suspended Graphene
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 陳啟東
Chen, Chi-Dong
林敏聰
Lin, Minn-Tsong
鄭舜仁
Cheng, Shun-Jen
李奎毅
Lee, Kuei-Yi
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 152
中文關鍵詞: 石墨烯拉曼光譜摻雜穿透式電子顯微鏡懸空石墨烯旋轉堆疊之雙層石墨烯
外文關鍵詞: Graphene, Raman spectroscopy, Doping, TEM, Suspended graphene, Twisted bilayer graphene
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯是最薄的二維材料,具備有天然的二維電子氣系統,可調變之載子濃度,以及優秀的高速電子傳輸特性,自2004年成功地以膠帶沾黏轉印之方法,將石墨烯轉印至氧化矽基板表面後,使得石墨烯更持續地受到科學家們的關注。目前製備石墨烯的發展已可利用化學氣相沉積的方式大面積地成長於銅箔表面上,本論文將逐步探討石墨烯的基本電子傳輸特性,調變載子濃度使其成為N型或P型石墨烯場效電晶體之應用。
    而石墨烯表面的潔淨程度對於電子傳導特性具有極大的影響,本論文提出一創新的技術,結合拉曼光譜檢測與穿透式電子顯微鏡之分析,利用穿透式電子顯微鏡鑑定其表面乾淨程度,建立不同非晶碳材料殘留於石墨烯表面而反映在拉曼光譜上的關係,經由此研究,石墨烯的表面可達到原子級的潔淨度,使得我們在未來石墨烯元件特性與其他光學特性量測上,都可充分的表現其純質的特性。
    此外,我們成功地成長單晶石墨烯於銅箔表面上,經由精確的調控成長參數後,可成長出雙層的單晶石墨結構,同時具有不同的旋轉角度堆疊可能性,而雙層石墨烯的電子能帶將隨著其旋轉角而改變,屆此,我們再次利用原子級潔淨的轉移,以拉曼光譜分析不同旋轉堆疊石墨烯的能帶結構,而其角度的鑑定則是由精確的穿透式電子顯微鏡來定義,我們提供了完整而想詳實的量測與分析數據,建立以拉曼光譜鑑定旋轉角度的資料庫,對於未來在調變能帶與電子元件的製備與應用上,具有極大的貢獻。


    Two-dimensional electron gas is an interesting system in semiconducting materials, in which electrons move freely in two dimensions, but the third degree-of-freedom is confined. The electron gas is artificially embedded in three-dimensional (3D) world such as the inversion layer in a field-effect transistor or the quantum well in semiconductor heterojunctions, but it is very difficult to realize ideal 2D structure by lithographical top-down method. In 2010 the Nobel Prize in physics was awarded to A. Geim and K. S. Novoselov for their pioneer work in isolating single-atomic-layer of graphite sheet on silicon dioxide. Graphene is the thinnest natural 2D material consisting of hexagonal carbon network in only one atom thick. Now a days, graphene can be synthesized by chemical vapor deposition on transition metal surface in wafer scale and even up to the 30 inches. To realize the applications to graphene-based electronic circuits and optoelectronics devices, first we have to precisely control the electronic conduction for n-type or p-type doping, and the most important issue is how to keep graphene surface clean to utilize the natural two-dimensional electron gas system sufficiently.

    This thesis outlines the process of making graphene electronic devices, starting from the fundamental study of the graphene transfer from metal, electrical transport, molecular doping, and theoretical electronic structure calculation. Particular emphasis is the ultra clean graphene transfer technique in combination with Raman spectroscopy and transmission electron microscopy (TEM). This technique becomes the step tone to improve the quality of graphene electronic and optoelectronic device.

    In Chapter 1, we start from the introduction of basic carbon allotropes in different dimensions and then focus to graphene, the 2D carbon material. We present an introductory overview to graphene structures and its energy band structure as well as the electrical properties and also giving an introduction to the fundamental optical properties.

    Chapter 2 gives an introduction of the Raman spectroscopy which is an important tool to identify the quality of graphene. To understand Raman spectroscopy, we first describe the point group theory and the relation between vibration modes and the phonon dispersion. Base on these knowledge, we can understand the origin of each Raman feature of graphene.
    At the end, we introduce the fingerprint of staked graphene layers.

    Chapter 3 discusses the fundamental electrical properties of graphene including field-effect behavior and the doping induced Raman G peak shift. In the following experiment, we take advantage of the large surface area and ambipolar conduction properties to perform p-type and n-type graphene field-effect transistor by using molecular doping and plasma treatment, respectively.

    Since we can utilize molecule adsorption or chemical functionalization to doped graphene, the surface cleanness of graphene turns into the key issue to determine the electrical or optical properties of graphene. In Chapter 4, we point out the contamination problems on graphene surface due to the strong dipole interaction with the lithographical resist, i.e. Poly(methyl methacrylate), PMMA. We build up a suspension technique to combine Raman spectroscopy and TEM to quantitatively estimate the thickness of residual PMMA and the figure out how does the residues affect to the graphene electronic properties.

    In Chapter 5, we further demonstrate a new method to transfer atomic clean graphene from the CVD growing material Cu. The surface cleanness is confirmed by TEM and we also establish a standard reference to judge the cleanness by Raman spectroscopy. We also build-up a new technique to transfer CVD graphene without using polymer. This technique push the surface cleanness from 100 $\times$ 100 nm$^{2}$ to an order larger area.
    This quality of such ultra-clean transferred graphene is also proved by quantum Hall effect measurement.

    In Chapter 6, single-crystal bilayer graphemes with distinct stacking orders and interlayer rotation angles are synthesized by chemical vapor deposition at ambient pressure. We use Raman spectroscopy to characterize the electronic structures of different rotation angles, where the rotation angles are identified precisely by selected area electron diffraction pattern in TEM. Fundamental knowledges of twisted bilayer graphene system are built up here and the electronic structures are further calculated by density functional theory. We found two new Raman excited mode on the twist bilayer graphene and also G peak enhancement phenomena at the critical twisting angle where the overlapped electronic structure rehybridization resulted in van Hove singularities and high local joint density of states. Based on these studies, we can further estimate the twisting angle in a more convenient method with high accuracy. Furthermore, the angle-dependent electronic structures, optical properties, Fermi velocity, and electrical transport can be further investigated on the CVD single-crystal bilayer graphene.

    List of publications Outline 1 Fundamental properties of graphene 1.1 Carbon in different dimensions 1.2 Geometrical structure of 2-dimensional carbon 1.3 Electrical properties 1.4 Optical properties 2 Raman scattering of graphene 2.1 Introduction 2.2 Symmetry in graphene 2.3 Phonon dispersion in graphene 2.4 Raman features of graphene 2.5 Raman fingerprint of graphene layers 3 Modulation of the electrical properties of graphene 3.1 Introduction 3.2 Field effect tuning 3.2.1 Introduction 3.2.2 Device fabrication 3.2.3 Transport characteristics 3.2.4 Raman analysis 3.3 Molecule adsorption 3.3.1 Introduction 3.3.2 Computational details 3.3.3 Interaction of adsorbates with graphene 3.3.4 Device fabrication 3.3.5 Melamine adsorption and functionalization 3.4 Plasmatreatments 3.4.1 Introduction 3.4.2 Device fabrication 3.4.3 NH3 plasma-N type doping 3.5 Conclusions 4 Problems on graphene surface 4.1 Introduction 4.2 Device fabrication 4.3 TEM analysis 4.4 XPS analysis 4.5 Raman analysis 4.6 Theoretical calculation 4.7 Conclusions 5 Fabrication of atomically clean graphene 5.1 Introduction 5.2 Device fabrication 5.3 Observation by transmission electron microscopy 5.4 Raman characterizations 5.5 Multiple reflections 5.6 Polymer free transfer process 5.7 Electrical transport 5.8 Conclusions 6 Optical properties of twisted bilayer graphene 6.1 Introduction 6.2 Device fabrication 6.3 TEM analysis 6.4 Theoretical calculation 6.5 Raman analysis 6.6 Conclusions 7 Summary and outlook Bibliography

    [1] T. Audesirk and G. Audesirk, Biology, Life on Earth. 5th Ed., Prentice-Hall (1999).
    [2] M. I. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10, 20-27 (2007).
    [3] H. G. Liddell and R. Scott, A Greek-English Lexicon. Oxford: Clarendon Press (1940).
    [4] T. Ando, H. Matsumura, and T. Nakanishi, Theory of ballistic transport in carbon nanotubes. Physica B 323, 44-50 (2002).
    [5] P. L. McEuen, Single-wall carbon nanotubes. Phys. World 13, 31-36 (2000).
    [6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666-669 (2004).
    [7] S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankratov, Electronic structure of turbostratic graphene. Phys. Rev. B 81, 1, (2010).
    [8] J. C. Slonczewski, and P. R. Weiss, Band structure of graphite. Phys. Rev. 109, 272 (1958).
    [9] G. W. Semenoff, Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449452 (1984).
    [10] F. D. M. Haldane, Model for a quantum Hall e?ect without Landau lev- els: Condensed-matter realization of the arity anomaly Phys. Rev. Lett. 61, 2015018 (1988).
    [11] P. R. Wallace, The band theory of graphite. Phys. Rev. 71, 62234 (1947).
    [12] J. C. Shelton, H. R. Patil, J. M. Blakely, Surf. Sci. 43, 49320 (1974).
    [13] M. Eizenberg, J. M. Blakely, Surf. Sci. 82, 22836 (1979).
    [14] T. A. Land, T. Michely,R. J. Behm, J. C. Hemminger, G. Comsa, Surf. Sci. 264, 26170 (1992).
    [15] A. T. Niaye, S. Bleikamp, P. J. Feibelman, T. Michely, Phys. Rev. Lett. 97, 215501 (2006).
    [16] P. Sutter, J. I. Flege, and E. A. Sutter, Nat. Mater. 7, 40611 (2008).
    [17] Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu, H. J. Gao, Adv. Mater. 20,
    1 (2008).
    [18] K. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P.
    Kim, J. Y. Choi, B. H. Hong, Nature 457, 70610 (2009).
    [19] H. Anders, Thin Films in Optics Focal, London, Pt. 1, pp. 188 (1967).
    [20] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 97, 187401 (2006)
    [21] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, Science 312, 1191 (2006).
    [22] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 146, 351 (2008).
    [23] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 438, 197 (2005).
    [24] Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Nature 438, 201 (2005).
    [25] K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, P. Kim, Nature
    462, 196 (2009).
    [26] H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, Hysteresis of Electronic
    Transport in Graphene Transistors. Nano Lett. 4, pp 7221228 (2010).
    [27] T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Kat- snelson, A. K. Geim, and A. I. Lichtenstein, Molecular Doping of Graphene. Nano Lett. 8, 173-177 (2008).
    [28] Quantum Wise A/S, tomistix Tool Kit Ch. 12.2.0 (2011).
    [29] M. Brandbyge, J. Mozos, P. Ordejn, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002).
    [30] J. M. Soler, A. Emilio, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
    [31] J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001).
    [32] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13, 5188 (1976).
    [33] J. Berashevich and T. Chakraborty, Doping graphene by adsorption of polar molecules at the oxidized zigzag edges. Phys. Rev. B 81, 205431 (2010)
    [34] D. Zhan, L. Sun, Z. H. Ni, L. Liu, X. F. Fan, Y. Wang, T. Yu, Y. M. Lam, W. Huang, Z. X. Shen, FeCl3-Based Few-Layer Graphene Intercalation Compounds: Single Linear Dispersion Electronic Band Structure and Strong Charge Transfer Doping. Adv. Funct. Mater. 20, 3504-3509 (2010).
    [35] E. S. Alldredge, S. C. Badescu, N. Bajwa, F. K. Perkins, E. S. Snow, and T. L. Reinecke, Phys. Rev. B 82, 125418 (2010)
    [36] L. D. Yao, F. Y. Li, J. X. Li, C. Q. Jin, and R. C. Yu, phys. stat. sol. 202, 2679 685 (2005)
    [37] Z.H.Ni,H.M.Wang,Z.Q.Luo,Y.Y.Wang,T.Yu,Y.H.Wu,andZ.X. Shen, The effect of vacuum annealing on graphene. J. Raman Spectrosc. 41, 479-483 (2010).
    [38] Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, and P. W. Chiu, Graphene Annealing: How Clean Can It Be? Nano Lett. 12, 414-419 (2012).
    [39] E. H. Hwang, S. Adam, and S. Das Sarma, Carrier Transport in Two- Dimensional Graphene Layers. Phys. Rev. Lett. 98, 186806 (2007).
    [40] W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, Carrier scattering, mobil- ities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009).
    [41] A. K. Geim, K. S. Novoselov, The Rise of Graphene. Nat. Mater. 6, 183-191 (2007).
    [42] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Kat- snelson, K. S. Novoselov, Detection of Individual Gas Molecules Adsorbed on Graphene. Nat. Mater. 6, 65255 (2007).
    [43] J. C. Meyer, C. O. Girit, M. F. Crommie, A. Zettl, Imaging and Dynamics of Light Atoms and Molecules on Gra- phene. Nature 454, 31922 (2008).
    [44] N. R. Wilson, P. A. Pandey, R. Beanland, R. J. Young, I. A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J. P. Rourke, S. J. York, J. Sloan, Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy. ACS Nano 3, 2547556 (2009).
    [45] J. Sloan, Z. Liu, K. Suenaga, N. R. Wilson, P. A. Pandey, L. M. Perkins, J. P. Rourke, I. J. Shannon, Imaging the Structure, Symmetry, and Surface- Inhibited Rotation of Polyoxometalate Ions on Graphene Oxide. Nano Lett. 10, 4600606 (2010).
    [46] M. Wanunu, T. Dadosh, V. Ray, J. Jin, L. McReynolds, M. Drndic, Rapid Electronic Detection of Probe-Specific MicroRNAs Using Thin Nanopore Sensors. Nat. Nanotechnol. 5, 80714 (2010).
    [47] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Res. 1, 20312 (2008).
    [48] C. Coletti, C. Riedl, D. S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J. H. Smet, U. Starke, Charge Neutrality and Band-Gap Tuning of Epitaxial Graphene on SiC by Molec- ular Doping. Phys. Rev. B 81, 235401 (2010).
    [49] Y. C. Lin, C. Y. Lin, P. W. Chiu, Controllable Graphene N-Doping with Ammonia Plasma. Appl. Phys. Lett. 96, 133110 (2010).
    [50] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, R. S. Ruoff, Transfer of Large-Area Graphene Films for High- Performance Transparent Conductive Electrodes. Nano Lett. 9, 4359363 (2009).
    [51] B. Alman, W. Regan, S. Aloni, V. Altoe, N. Alem, C. Girit, B. Geng, L. Maserati, M. Crommie, F. Wang, Transfer- Free Batch Fabrication of Large- Area Suspended Gra- phene Membranes. ACS Nano 4, 4762768 (2010).
    [52] H. J. Park, J. Meyer, S. Roth, V. Skakalova, Growth and Properties of Graphene Prepared by Chemical Vapor Deposition. Carbon 48, 1088094 (2010).
    [53] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colom- bo, R. S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312314 (2009).
    [54] A. C. Ferrari, Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 143, 477 (2007).
    [55] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Canc-ado, A. Jorio, R. Saito, Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 9, 1276291 (2007).
    [56] S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, F. Mauri, Breakdown of The Adiabatic Born-Oppenheimer Approxi- mation in Graphene. Nat. Mater. 6, 19801 (2007).
    [57] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, A. K. Sood, Monitoring Dopants by Raman Scattering in an Electrochemically Top- Gated Graphene Transistor. Nat. Nanotechnol. 3, 21015 (2008).
    [58] J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene. Phys. Rev. Lett. 98, 166802 (2007).
    [59] M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson, Phonon Linewidths and Electron-Phonon Coupling in Graphite and Nanotubes. Phys. Rev. B 73, 155426 (2006).
    [60] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, P. J. Kelly, Doping Graphene with Metal Contacts. Phys. Rev. Lett. 101, 026803 (2008).
    [61] R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, M. A. Pimenta, Probing Phonon Dis- persion Relations of Graphite by Double Resonance Raman Scattering. Phys. Rev. Lett. 88, 027401 (2002).
    [62] V. Geringer, D. Subramaniam, A. K. Michel, B. Szafranek, D. Schall, A. Georgi, T. Mashoff, D. Neumaier, M. Liebmann, M. Morgenstern, Electrical Transport and Low-Tem- perature Scanning Tunneling Microscopy of Mi- crosoldered Graphene. Appl. Phys. Lett. 96, 082114 (2010).
    [63] T. J. Booth, P. Blake, R. R. Nair, D. Jiang, E. W. Hill, U. Bangert, A. Bleloch, M. Gass, K. S. Novoselov, M. I. Katsnelson, A. K. Geim, Macro- scopic Graphene Membranes and Their Extraordinary Stiffness. Nano Lett. 8, 2442446 (2008).
    [64] P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, Making Graphene Visible. Appl. Phys. Lett. 91, 063124 (2007).
    [65] C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Haru-tyunyan, T. Gokus, K. S. Novoselov, A. C. Ferrari, Rayleigh Imaging of Graphene and Graphene Layers. Nano Lett. 7, 2711717 (2007).
    [66] S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, F. Beltram, The Optical Visibility of Graphene: Interference Colors of Ultrathin Graphite on SiO2. Nano Lett. 7, 2707710 (2007).
    [67] Y. Y. Wang, Z. H. Ni, Z. X. Shen, H. M. Wang, Y. H. Wu, Interference Enhancement of Raman Signal of Graphene. Appl. Phys. Lett. 92, 043121 (2008).
    [68] A. C. Ferrari, J. Robertson, Raman Spectroscopy of Amor- phous, Nanos- tructured, Diamond-like Carbon, and Nano-diamond. Philos. Trans. R. Soc. London, Ser. A 362, 2477512 (2004).
    [69] M. A. Capano, N. T. McDevitt, R. K. Singh, F. Qian, Characterization of Amorphous Carbon Thin Films. J. Vac. Sci. Technol., A 14, 43135 (1996).
    [70] K. J. Thomas, M. Sheeba, V. P. N. Nampoori, C. P. G. Vallabhan, P. Rad- hakrishnan, Raman Spectra of Polymethyl Methacrylate Optical Fibres Ex- cited by a 532 nm Diode Pumped Solid State Laser. J. Opt. A: Pure Appl. Opt. 10, 055303 (2008).
    [71] X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, Z. Liu, Can Graphene Be Used as a Substrate for Raman Enhance- ment?. Nano Lett. 10, 55361 (2010).
    [72] M. V. Klein, T. E. Furtak, Optics; Wiley: New York, (1986).
    [73] Z.H.Ni,H.M.Wang,J.Kasim,H.M.Fan,T.Yu,Y.H.Wu,Y.P.Feng,Z. X. Shen, Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Lett. 7, 2758763 (2007).
    [74] Y. Zhao, Z. Liu, W. Chu, L. Song, Z. Zhang, D. Yu, Y. Tian, S. Xie, and L. Sun, Large-Scale Synthesis of Nitrogen-Rich Carbon Nitride Microfibers by Using Graphitic Carbon Nitride as Precursor. Adv. Mater. 20, 1777-1781 (2008).
    [75] X. Z. Tang, W. Li, Z. Z. Yu, M. A. Rafiee, J. Rafiee, F. Yavari, N. Koratkar,
    Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5- triazine. Carbon 49, 1258265 (2011).
    [76] L. Li, S. Reich, J. Robertson, Defect Energies of Graphite: Density- Functional Calculations. Phys. Rev. B 72, 184109 (2005).
    [77] J. Ma, D. Alfe, A. Michaelides, E. Wang, Stone-Wales Defects in Graphene and Other Planar sp2-Bonded Materials. Phys. Rev. B 80, 033407 (2009).
    [78] F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, Structural Defects in Graphene. ACS Nano 5, 261 (2011).
    [79] C. Wang, G. Zhou, H. Liu, J. Wu, Y. Qiu, B. L. Gu, and W. Duan, J. Phys. Chem. B 110, 10266-10271 (2006).
    [80] L. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-Paniago, M. A. Pimenta, Appl. Phys. Lett. 88, 163106, (2006)
    [81] T. Sasaki, H. Sawada, F. Hosokawa, Y. Kohno, T. Tomita, T. Kaneyama, Y. Kondo, K. Kimoto, Y. Sata, K. Suenaga, Performance of Low-Voltage STEM/TEM with Delta Cor- rector and Cold Field Emission Gun. J. Elec- tron Microsc. 59, S713 (2010).
    [82] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnel- son, and K. S. Novoselov, Nature Mater. 6, 652 (2007).
    [83] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature (London) 442, 282 (2006).
    [84] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotechnol. 3, 538 (2008).
    [85] Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, Nano Lett. 9, 422 (2009).
    [86] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
    [87] X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett. 100, 206803 (2008).
    [88] M. S. Dresselhaus and G. Dresselhaus, Adv. Phys. 51, 1 (2002).
    [89] D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S.
    Tulevski, J. C. Tsang, and P. Avouris, Nano Lett. 9, 388 (2009).
    [90] P. Sutter, M. S. Hybertsen, J. T. Sadowski, and E. Sutter, Nano Lett. 9,
    2654 (2009).
    [91] C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, and A. C. Ferrari,
    Appl. Phys. Lett. 91, 233108 (2007).
    [92] J. Martin, M. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Kl-
    itzing, and A. Yacoby, Nat. Phys. 4, 144 (2007).
    [93] C. Morant, J. Andrey, P. Prieto, D. Mendiola, J. M. Sanz, and E. Elizalde,
    Phys. Status Solidi A 203, 1069 (2006).
    [94] S. Maldonado, S. Morin, and K. J. Stevenson, Carbon 44, 1429 (2006).
    [95] S. Maldonado and K. J. Stevenson, J. Phys. Chem. B 109, 4707 (2005).
    [96] N. Hellgren, J. Guob, Y. Luoc, C. Sthed, A. Aguid, S. Kashtanov, J. Nord- gren, H. gren, and J.-E. Sundgren, Thin Solid Films 471, 19 (2005).
    [97] A. Felten, C. Bittencourt, J. J. Pireaux, G. Van Lier, and J. C. Charlier, J. Appl. Phys. 98, 074308 (2005).
    [98] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, Science 324, 768 (2009).
    [99] J. Robertson and C. A. Davis, Diamond Relat. Mater. 4, 441 (1995).
    [100] J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, Phys. Rev. Lett. 98, 166802
    (2007).
    [101] C. W. Bauschlicher, Jr. and A. Ricca, Phys. Rev. B 70, 115409 (2004).
    [102] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
    [103] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 146, 351-355 (2008).
    [104] Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, A. K. Geim, Nano Lett. 10, 3868-3872 (2010).
    [105] L. A. Ponomarenko, R. Yang, T. M. Mohiuddin, M. I. Katsnelson, K. S. Novoselov, S. V. Morozov, A. A. Zhukov, F. Schedin, E. W. Hill, A. K. Geim, Phys. Rev. Lett. 102, 206603 (2009).
    [106] M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. von Klitzing, J. H. Smet, Nano Lett. 10, 1149-1153 (2010).
    [107] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Kat- snelson, K. S. Novoselov, Nature Mater. 6, 652-655 (2007).
    [108] J. Berashevich, T. Chakraborty, Phys. Rev. B 81, 205431 (2010).
    [109] H. Medina, Y. C. Lin, D. Obergfell, P. W. Chiu, Adv. Funct. Mater. 21,
    2687-2692 (2011).
    [110] L .A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K.
    S. Novoselov, A. K. Geim, Science 320, 356-358 (2008).
    [111] Y. C. Lin, C. Jin, L. C. Lee, S. F. Jen, K. Suenaga, P. W. Chiu, ACS Nano 5, 2362-2368 (2011).
    [112] A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. Mc- Donnell, L. Colomobo, E. M. Vogel, R. S. Ruoff, R. M. Wallace, Appl. Phys. Lett. 99, 122108 (2011).
    [113] X. Li, W. Cai, J, An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 324, 1312-1314 (2009).
    [114] K. M. McCreary, K. Pi, R. K. Kawakami, Appl. Phys. Lett. 98, 192101 (2011).
    [115] C. T. Chen, F. Sette, Phys. Scr. T31, 119-126 (1990).
    [116] J. F. Morar, F. J. Himpsel, G. Hollinger, J. L. Jordan, G. Hughes, F. R.
    McFeely, Phys. Rev. B 33, 1340-1345 (1986).
    [117] Th. Gross, A. Lippitz, W. E. S. Unger, Ch. Wo ̈ll, G. Ha ̈hner, W. Braun,
    Appl. Surf. Sci. 68, 291-298 (1993).
    [118] T. C. Chiang, F. Seitz, Ann. Phys. 10, 61 (2001). [119] S. J. Yumitori, Mater. Sci. 35, 139 (2000).
    [120] C. Casiraghi, Phys. Rev. B 80, 233407 (2009).
    [121] T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, A. C. Ferrari, Phys. Rev. B 79, 205443 (2009).
    [122] Z. Ni, Y. Wang, T. Yu, Y. You, Z. Shen, Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy. Phys. Rev. B 77, 235403 (2008).
    [123] P. Poncharal, A. Ayari, T. Michel, J. L. Sauvajol, Phys. Rev. B 78, 113407 (2008).
    [124] G. Madras, J. M. Smith, B. J. McCoy, Ind. Eng. Chem. Res. 35, 1795 (1996).
    [125] T. Kashiwagi, A. Inaba, J. E. Brown, K. Hatada, T. Kitayama, E. Masuda, Macromolecules 19, 2160?2168 (1986).
    [126] H. Arisawa, T. B. Brill, Combust. Flame 109, 415 (1997).
    [127] M. C. Costache, D. Wang, M. J. Heidecker, E. Manias, C. A. Wilkie, Polym.
    Adv. Technol. 17, 272 (2006).
    [128] S. L. Madorsky, Thermal Degradation of Organic Polymers; Interscience Publishers: New York, (1964).
    [129] S. I. Stoliarov, P. R. Westmoreland, M. R. Nyden, G. P. Forney, Polymer 44, 883-894 (2003).
    [130] A. Inaba, T. Kashiwagi, Macromolecules 19, 2412 (1986).
    [131] T. Kashiwagi, H. Horil, K. Hatada, T. Kitayama, Polym. Bull. 21, 443
    (1989).
    [132] L. E. Manring, Macromolecules 22, 2673 (1989).
    [133] B. Zhang, F. D. Blum, Polym. Prepr. 43, 484 (2002).
    [134] A. B. Morgan, J. M. Antonucci, M. R. Vanlandingham, R. H. Jr. Harris, T. Kashiwagi, Polym. Mater. Sci. Eng. 83, 57 (2000).
    [135] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing A. Yacoby, Observation of electronole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144 - 148 (2008)
    [136] D. B. Farmer, H. Y. Chiu, Y. M. Lin, K. A. Jenkins, F. Xia, and P. Avouris,
    Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mo- bility in Graphene Transistors. Nano Lett. 9, 4474-4478 (2009).
    [137] K. Seyoung, N. Junghyo, J. Insun, S. Davood, C. Luigi, Y. Zhen, T. Emanuel, and K. B. Sanjay, Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94, 062107 (2009).
    [138] J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Charged-impurity scattering in graphene. Nat. Phys. 4, 377-381 (2008).
    [139] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, Proc. Natl. Acad. Sci. U.S.A. 104, 18392 (2007).
    [140] Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y. W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim, Landau-Level Splitting in Graphene in High Magnetic Fields. Phys. Rev. Lett. 96, 136806 (2006).
    [141] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunneling and the Klein paradox in graphene. Nat. Phys. 2, 620-625 (2006).
    [142] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine Structure Constant Defines Visual Transparency of Graphene. Science 320, 1308 (2008).
    [143] G. Kirchhoff and R. Bunsen, Chemical Analysis by Observation of Spectra. Annalen der Physik und der Chemie (Poggendorff) 110, 161-189 (1860).
    [144] S. Reich and C. Thomsen, Raman spectroscopy of graphite. Phil. Trans. R. Soc. Lond. A 362, 2271-2228 (2004).
    [145] N. B. Colthup and L. H. Daly and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Boston : Academic Press, 3rd ed. (1990).
    [146] M. S. Dresselhaus and G. Dresselhaus and A. Jorio, Group Theory: Ap- plication to the Physics of Condensed Matter. Springer-Verlag, Heidelberg (2008).
    [147] P. J. Wheatley, The Determination of Molecular Structure. Oxford Uni. Press, London and New York (1959).
    [148] F. Tuinstra and J. L. Koenig, Raman Spectrum of Graphite. J. Chem. Phys. 53, 1126 (1970).
    [149] A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disor- dered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).
    [150] C. Thomsen and S. Reich, Double Resonant Raman Scattering in Graphite. Phys. Rev. B 85, 5214 (2000).
    [151] C. Mapelli and C. Castiglioni and G. Zerbi and K. Mullen, Common force field for graphite and polycyclic aromatic hydrocarbons. Phys. Rev. B 60, 12710 (1999).
    [152] R. J. Nemanich, G. Lucovsky, and S. A. Solin, Solid State Commun. 23, 117 (1977).
    [153] G. Dolling and B. N. Brockhouse, Phys. Rev. 128, 1120 (1962).
    [154] R. Nicklow, N. Wakabayashi, and H. G. Smith, Phys. Rev. B. 5, 4951
    (1972).
    [155] R. J. Nemanich and S. A. Solin, First- and second-order Raman scattering
    from finite-size crystals of graphite. Phys. Rev. B 20, 392 (1979).
    [156] M.S. Dresselhaus, A. Jorio, and R. Saito, Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. Annu. Rev. Con- dens. Matter Phys. 1, 8908 (2010).
    [157] H.W .Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene. Nature 318, 162 (1985).
    [158] S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
    [159] J. D. Bernal, The structure of graphite. Proc. R. Soc. London, Ser. A 106, 749 (1924).
    [160] R. Saito and G. Dresselhaus and M. S. Dresselhaus, Physical properties of carbon nanotubes. London : Imperial College Press (1998).
    [161] R. J. Nemanich and S. A. Solin, First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20, 392 (1979).
    [162] Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S. S. Pei, and Y. P. Chen, Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443-449 (2011).
    [163] X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. J. Am. Chem. Soc. 133, 2816819 (2011).
    [164] J. B. Oostinga, H. B. Heersche, X. LIU, A. F. Morpurgo, and L. M. K. Vandersypen, Gate-induced insulating state in bilayer graphene devices Nat. Mater. 7, 151-157 (2008).
    [165] K. Yan, H. Peng, Y. Zhou, H. Li, and Z. Liu, Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition. Nano Lett. 11, 1106110 (2011).
    [166] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Graphene Bilayer with a Twist: Electronic Structure. Phys. Rev. Lett. 99, 256802 (2007).
    [167] S. Shallcross, S. Sharma, W. Landgraf, and O. Pankratov, Electronic struc- ture of graphene twist stacks. Phys. Rev. B 83, 153402 (2011).
    [168] E. Suarez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z. Barticevic,
    Flat bands in slightly twisted bilayer graphene: Tight-binding calculations.
    Phys. Rev. B 82, 121407 (2010).
    [169] S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankratov, Electronic
    structure of turbostratic graphene. Phys. Rev. B 81, 1 (2010).
    [170] L. Xian, S. Barraza-Lopez, and M. Y. Chou, Effects of electrostatic fields and charge doping on the linear bands in twisted graphene bilayers. Phys. Rev. B 84, 075425 (2011).
    [171] A. Luican, Guohong Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, and E. Y. Andrei, Single-Layer Behavior and Its Breakdown in Twisted Graphene Layers. Phys. Rev. Lett. 106, 126802 (2011).
    [172] G. Li, A. Luican, J. M. B. Lopes dos Santos, A. H. Castro Neto, A. Reina, J. Kong and E. Y. Andrei, Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109-113 (2010).
    [173] A. W. Robertson and J. H. Warner, Hexagonal Single Crystal Domains of Few-Layer Graphene on Copper Foils. Nano Lett. 11, 1182-1189 (2011).
    [174] S. Horiuchi, et al., Carbon nanofilm with a new structure and property. Jpn. J. Appl. Phys. 42, L1073-L1076 (2003).
    [175] Y. Hernandez, et al., High-yield production of grapheme by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 7, 406-411 (2008).
    [176] S. Latil, V. Meunier, and L. Henrard, Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experi- mental fingerprints Phys. Rev. B 76 201402(R) (2007).
    [177] S. Shallcross, S. Sharma, and O. Pankratov, Quantum Interference at the Twist Boundary in Graphene Phys. Rev. Lett. 101, 056803 (2008).
    [178] E. Suarez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z. Barticevic,
    Flat bands in slightly twisted bilayer graphene: Tight-binding calculations
    Phys. Rev. B 82, 121407 (2010).
    [179] G. Trambly de Laissardiere, D. Mayou, and L. Magaud, Localization of
    Dirac Electrons in Rotated Graphene Bilayers Nano Lett. 10, 804-808 (2010).
    [180] J. Hicks, M. Sprinkle, K. Shepperd, and F. Wang, A. Tejeda, A. Taleb- Ibrahimi, F. Bertran, P. Le Fevre, W. A. de Heer, C. Berger, and E. H. Conrad, Symmetry breaking in commensurate graphene rotational stacking: Comparison of theory and experiment Phys. Rev. B 83, 205403 (2011).
    [181] V.Carozo, C. M. Almeida, E. H. M. Ferreira, L. G. Cancado, C. A. Achete, and A. Jorio, Raman Signature of Graphene Superlattices Nano Lett. 11, 4527-4534 (2011).
    [182] R. W. Havener, H. Zhuang, L. Brown, R. G. Hennig, and J. Park, Angle- Resolved Raman Imaging of Interlayer Rotations and Interactions in Twisted Bilayer Graphene Nano Lett. nl301137k (2012).
    [183] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009)
    [184] L. G. Cancado, A. Reina, J. Kong, and M. S. Dresselhaus, Geometrical approach for the study of G’ band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite Phys. Rev. B 77, 245408 (2008).
    [185] J. Maultzsch, S. Reich, and C. Thomsen, Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion Phys. Rev. B 70, 155403 (2004).
    [186] L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, A. H. Castro Neto, and M. A. Pimenta, Phys. Rev. B 76, 201401 (2007).
    [187] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P.C. Eklund, Raman Scat- tering from High-Frequency Phonons in Supported n-Graphene Layer Films Nano Lett. 6, 2667-2673 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE