簡易檢索 / 詳目顯示

研究生: 陳沅彰
Chen, Yuan-Chang
論文名稱: 利用 ATLAS 偵測器探討希格斯粒子衰變至雙玻色子測量與深層神經網路於其之應用
Application of deep neural networks in the H → WW∗ → lνlν analysis using pp collisions data at √s = 13 TeV with the ATLAS detector
指導教授: 徐百嫻
Hsu, Pai-Hsien Jennifer
口試委員: 陳凱風
Chen, Kai-Feng
曾柏彥
Tseng, Po-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 63
中文關鍵詞: 大強子對撞機高能實驗希格斯玻色子粒子物理機器學習
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文利用由 ATLAS 偵測器在 Run-2 期間所搜集的 13 TeV 質子對撞數據 (139 fb−1),進行機器學習方法應用於大強子對撞實驗之希格斯玻色子量測的實驗分析。本研究提出引入深層神經網路(DNN)方法篩選膠子融合雙噴流事 件,並將其輸出分佈與當前實驗選用的雙輕子橫質量做比較。統計擬合結果顯示深層網路輸出分佈作為判別變量可以提升 36% 的實驗靈敏度。


    The study presents the application of machine learning methods in the combined measurement of gluon-gluon fusion and vector boson fusion Higgs decaying to a pair of W bosons, with 139 fb−1 of proton-proton collision at a center-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider (LHC). The deep neural network (DNN) algorithm is trained and tested to enhance the sensitivity for ggF 2-jet events; the DNN shape output is used as a discriminant variable to the fit as a replacement for the default di-lepton transverse mass. The profile likelihood fit result shows an improvement of 36% in sensitivity using the DNN-trained output.

    Contents iii List of Tables iv List of Figures vii 1 Introduction 1 1.1 The Discovery of the Higgs Boson................... 1 1.2 The Higgs Boson and the Standard Model...................3 1.3 Overview of the H → WW∗ → lνlν Analysis................... 5 1.4 The Application of Deep Neural Networks in the ggF 2-jet Analysis 7 2 The ATLAS experiment at the LHC 9 2.1 The Large Hadron Collider....................... 9 2.2 The ATLAS Detector.......................... 10 2.2.1 The Coordinate System .................... 10 2.2.2 The Components of the ATLAS Detector................... 11 2.3 Trigger and Data Acquisition System................. 13 2.4 Object Reconstruction, Identification, and Selection ..... 14 3 H → W W ∗ Analysis Strategy 17 3.1 Signal and Background Processes ................... 17 3.1.1 ggF and VBF Production Channels................... 17 3.1.2 The Properties of H → WW∗ decay ............. 18 3.1.3 Backgrounds .......................... 19 3.2 Data and Monte Carlo Samples .................... 19 3.2.1 Data Samples.......................... 19 3.2.2 Monte Carlo Samples...................... 19 3.3 Composite Observables......................... 21 3.3.1 Background Rejection ..................... 22 3.3.2 Topological Variables...................... 24 3.3.3 VBFObservable(orthogonal cuts)................... 24 3.4 Event Selection ............................. 26 3.4.1 Preselection ........................... 26 3.4.2 Signal Region Selection .................... 27 3.4.3 Background Estimation and Control Region Selection ....... 33 4 DNN in the H → WW∗ Analysis 37 4.1 Machine Learning in High Energy Physics ................... 37 4.2 Introduction to Deep Neural Networks ................ 38 4.2.1 Artificial Neuron and Neural Network ................... 39 4.2.2 DNN Training and Hyper-parameters ................... 41 4.3 DNN shape as final discriminant for ggF 2-jet category ......... 42 4.4 Significance Calculation ........................ 43 4.4.1 Binning optimization and the Flat-signal rebinning ......... 43 4.5 Training Samples and Architectures .................. 44 5 Result and Conclusion 52 5.1 DNN performance ........................... 52 5.2 Fit result ................................ 53 5.3 Conclusion................................ 54 A DNN Validation in Control Regions 57

    [1] GeorgesAadetal.ObservationofanewparticleinthesearchfortheStandard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716:1–29, 2012.
    [2] Serguei Chatrchyan et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B, 716:30–61, 2012.
    [3] Georges Aad et al. Observation and measurement of Higgs boson decays to WW∗ with the ATLAS detector. Phys. Rev. D, 92(1):012006, 2015.
    [4] P. A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.
    [5] Measurementsofgluonfusionandvector-boson-fusionproductionoftheHiggs boson in H → WW∗ → eνμν decays using pp collisions at √s = 13 TeV with the ATLAS detector. 3 2021.
    [6] G. Aad et al. The ATLAS Experiment at the CERN Large Hadron Collider. JINST, 3:S08003, 2008.
    [7] Christian Lippmann. Particle identification. Nucl. Instrum. Meth. A, 666:148– 172, 2012.
    [8] Georges Aad et al. Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton-proton collision data. JINST, 14(12):P12006, 2019.
    [9] Georges Aad et al. Muon reconstruction and identification efficiency in AT- LAS using the full Run 2 pp collision data set at √s = 13 TeV. Eur. Phys. J. C, 81(7):578, 2021.
    [10] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti-kt jet clus- tering algorithm. JHEP, 04:063, 2008.
    [11] Forward jet vertex tagging using the particle flow algorithm. 2019.
    [12] Morad Aaboud et al. Performance of missing transverse momentum recon- struction with the ATLAS detector using proton-proton collisions at √s = 13 TeV. Eur. Phys. J. C, 78(11):903, 2018.
    [13] Morad Aaboud et al. Performance of the ATLAS Trigger System in 2015. Eur. Phys. J. C, 77(5):317, 2017.
    [14] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. A Brief Intro- duction to PYTHIA 8.1. Comput. Phys. Commun., 178:852–867, 2008.
    [15] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. PYTHIA 6.4 Physics and Manual. JHEP, 05:026, 2006.
    [16] Paolo Nason and Carlo Oleari. NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG. JHEP, 02:037, 2010.
    [17] Hung-Liang Lai, Marco Guzzi, Joey Huston, Zhao Li, Pavel M. Nadolsky, Jon Pumplin, and C. P. Yuan. New parton distributions for collider physics. Phys. Rev. D, 82:074024, 2010.
    [18] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP, 07:079, 2014.
    [19] Richard D. Ball et al. Parton distributions with LHC data. Nucl. Phys. B, 867:244–289, 2013.
    [20] Georges Aad et al. Measurement of the Z/γ∗ boson transverse momentum distribution in pp collisions at √s = 7 TeV with the ATLAS detector. JHEP, 09:145, 2014.
    [21] ATLAS Pythia 8 tunes to 7 TeV data. 11 2014.
    [22] T. Gleisberg, Stefan. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, and J. Winter. Event generation with SHERPA 1.1. JHEP, 02:007, 2009.
    [23] Steffen Schumann and Frank Krauss. A Parton shower algorithm based on Catani-Seymour dipole factorisation. JHEP, 03:038, 2008.
    [24] Charalampos Anastasiou, Claude Duhr, Falko Dulat, Elisabetta Furlan, Thomas Gehrmann, Franz Herzog, Achilleas Lazopoulos, and Bernhard Mistl- berger. High precision determination of the gluon fusion Higgs boson cross- section at the LHC. JHEP, 05:058, 2016.
    [25] M. Ciccolini, Ansgar Denner, and S. Dittmaier. Strong and electroweak cor- rections to the production of Higgs + 2jets via weak interactions at the LHC. Phys. Rev. Lett., 99:161803, 2007.
    [26] K. Arnold et al. VBFNLO: A Parton level Monte Carlo for processes with electroweak bosons. Comput. Phys. Commun., 180:1661–1670, 2009.
    [27] Paolo Bolzoni, Fabio Maltoni, Sven-Olaf Moch, and Marco Zaro. Higgs production via vector-boson fusion at NNLO in QCD. Phys. Rev. Lett., 105:011801, 2010.
    [28] John M. Campbell and R. K. Ellis. MCFM for the Tevatron and the LHC. Nucl. Phys. B Proc. Suppl., 205-206:10–15, 2010.
    [29] Michal Czakon, David Heymes, Alexander Mitov, Davide Pagani, Ioannis Tsinikos, and Marco Zaro. Top-pair production at the LHC through NNLO QCD and NLO EW. JHEP, 10:186, 2017.
    [30] D. J. Lange. The EvtGen particle decay simulation package. Nucl. Instrum. Meth. A, 462:152–155, 2001.
    [31] T. Plehn, David L. Rainwater, and D. Zeppenfeld. A Method for identifying H → τ+τ− → e±μ∓pT at the CERN LHC. Phys. Rev. D, 61:093005, 2000.
    [32] François Chollet et al. Keras. https://keras.io, 2015.
    [33] Martín Abadi et al. TensorFlow: Large-scale machine learning on heteroge-
    neous systems, 2015. Software available from tensorflow.org.
    [34] Object-based missing transverse momentum significance in the ATLAS de- tector. 7 2018.
    [35] C. G. Lester and D. J. Summers. Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders. Phys. Lett. B, 463:99–103, 1999.
    [36] Georges Aad et al. A neural network clustering algorithm for the ATLAS silicon pixel detector. JINST, 9:P09009, 2014.
    [37] Nisha Nareshbhai Lad. Machine learning predictor for ‘measurement-to- track’association for the ATLAS inner detector trigger. Technical report, CERN, Geneva, Feb 2022.
    [38] Albert M Sirunyan et al. Electron and photon reconstruction and identifica- tion with the CMS experiment at the CERN LHC. JINST, 16(05):P05014, 2021.
    [39] Identification of hadronic tau lepton decays using neural networks in the ATLAS experiment. 2019.
    [40] Konstantin Androsov. Identification of tau leptons using Deep Learning tech- niques at CMS. Technical report, CERN, Geneva, Nov 2019.
    [41] Measurement of the tau lepton reconstruction and identification performance in the ATLAS experiment using pp collisions at √s = 13 T eV . 5 2017.
    [42] Vardan Khachatryan et al. Observation of the Diphoton Decay of the Higgs Boson and Measurement of Its Properties. Eur. Phys. J. C, 74(10):3076, 2014.
    [43] V. V. Gligorov and Mike Williams. Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree. JINST, 8:P02013, 2013.
    [44] P. Abreu et al. Classification of the hadronic decays of the Z0 into b and c quark pairs using a neural network. Phys. Lett. B, 295:383–395, 1992.
    [45] Yongbin Feng. A New Deep-Neural-Network–Based Missing Transverse Mo- mentum Estimator, and its Application to W Recoil, 2020.
    [46] Tomasz Szandała. Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks, pages 203–224. 01 2021.
    [47] Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 - learning rate, batch size, momentum, and weight decay. CoRR, abs/ 1803.09820, 2018.
    [48] Constraints on Higgs boson properties using WW∗(→ eνμν) jj production in 36.1fb−1 of √s = 13T eV pp collisions with the ATLAS detector. 11 2020.
    [49] Formulae for Estimating Significance. Technical report, CERN, Geneva, Sep 2020. All figures including auxiliary figures are available at https://at- las.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB- 2020-025.
    [50] Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-Validation, pages 532– 538. Springer US, Boston, MA, 2009.

    QR CODE