簡易檢索 / 詳目顯示

研究生: 黃振淵
Chen-Yuan Huang
論文名稱: 新穎奈米碳管束之製備及其性質研究
Preparation and Characterization of Novel CNT Bundles
指導教授: 彭宗平
Tsong-Pyng Perng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 108
中文關鍵詞: 奈米碳管碳管束電性機械性質電阻磁性質模數矯頑場有機鐵
外文關鍵詞: carbon nanotube, bundle, mechanical, electrical, electron transport, magnetic, modulus, resistance, coercivity, iron-filled, template synthesis, AAO
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從1991年發現奈米碳管後,十幾年來許多相關的研究被廣泛的討論。奈米碳管規則且對稱的結構,使它擁有許多獨特的性質且應用潛力無窮。近幾年,科學家更致力於奈米尺度下碳管機械性質、電子傳輸性質以及場發射性質之研究。
    本論文係藉由化學氣相沈積法,利用多孔氧化鋁基板及有機鐵催化乙炔裂解,製備出新穎碳管束材料。一維奈米線可經由規則孔洞的基板合成,然而對此結構目前尚未有文獻提出。此碳管束直徑200nm,長度60μm,是由許多纏繞的小碳管及非晶質碳所組成。這些纏繞的小碳管直徑分佈相當均勻,平均約為12.5nm,並且擁有相當良好的石墨層結構。
    小碳管中發現有許多填入奈米棒狀(直徑5–15nm,長度<1μm)或球狀(直徑5–10nm)的鐵或雪明碳鐵。經過超導量子干涉儀分析,其矯頑場在溫度350K時為392Oe,在溫度為5K時為1633Oe,在室溫下的矯頑場則為510Oe,此值遠大於鐵塊材的矯頑場1Oe。造成如此大差異的原因可能在於奈米棒狀的鐵,其形貌及晶向使磁區不易磁化。此外,奈米碳管束的導磁率在溫度5K時為4.37×10-3 emu/g•Oe,在室溫下則為 17×10-3 emu/g•Oe。
    單根奈米碳管束的機械性質經由奈米壓痕機測定,其楊氏模數為166GPa,石墨化後可得到更高的楊氏模數。用兩點量測法來鑑定單根奈米碳管束的電性,發現其電阻隨溫度下降而上升,呈現半導體的導電特性,其室溫下的電阻率為5.77□-cm。在測量電性時發現有電壓跳動的現象,判斷應該是電極與碳管束之間高接觸電阻所造成。


    In the past decade, copious researches in carbon nanotubes (CNTs) have been preformed after their discovery in 1991 due to their symmetric structure, unique properties and potential applications. In recent years, many studies of the special properties of carbon nanotubes, such as mechanical properties, electron transport properties, and field emission at nanoscale dimensions have been attempted.
    A new approach to prepare novel CNT bundles has been developed in this study. This approach entails chemical vapor deposition of carbon within the pores of an alumina template membrane using acetylene pyrolysis with ferrocene as catalyst. Many attempts have so far been made to fabricate one-dimensional nanostructures using template synthesis; however, little attention has been paid to such a bundle structure.
    The bundles with 200nm in diameter and 60μm in length are composed of amorphous carbon and tangled multi-walled carbon nanotubes with an average outer diameter of 12.5nm. The CNTs, with a narrow distribution of diameters, are formed by highly crystalline graphite layers.
    In addition, some carbon nanotubes in the bundles are filled with Fe or Fe3C inside the tube in the form of nanorod (in a diameter of 5–15nm and length of <1μm) or nanoparticle (in a diameter of 5–10nm). These Fe or Fe3C-filled nanotubes exhibit high coercivities of 392Oe at 350K and 1633Oe at 5K, characterized by a superconducting quantum interference device. The coercivity measured at room temperature is 510Oe which is far greater than that of bulk iron (~1Oe), possibly due to the tube’s geometry and orientation. The bundles exhibit magnetic susceptibilities of 4.37×10-3 emu/g•Oe at 5K and 17×10-3 emu/g•Oe at 300K.
    The mechanical properties of the bundles were studied by nanoindentation. The elastic modulus of the bundles was calculated to be 166 GPa. After graphitization, the bundles became CNTs and graphite which exhibited a superior elastic modulus.
    The I-V characteristics of the bundles measured by a two-probe method show that the resistance increases with decreasing temperature, showing a semiconducting behavior. The resistivity of the bundle at 300K is about 5.77□-cm. Furthermore, an unusual voltage jump has been observed, suggesting that it is due to high contact resistance between the electrodes and the bundle.

    摘要 Abstrate 誌謝 Table of Contents Chapter 1 Introduction.....1 1-1 Carbon materials 1-2 Carbon nanotubes 1-3 Preparation of carbon nanotubes 1.3.1 Arc discharge 1.3.2 Laser ablation 1.3.3 Chemical vapor deposition 1-4 Growth mechanisms of carbon nanotubes 1-5 Structure of carbon nanotubes 1-6 Chemical modification of carbon nanotubes 1.6.1 Doping with boron and nitrogen 1.6.2 Opening and filling with metals 1-7 Properties of carbon nanotubes 1.7.1 Electron transport properties 1.7.2 Field emission 1.7.3 Mechanical properties 1.7.4 Hydrogen storage Chapter 2 Literature Review.....20 2-1 Organometallic-catalyzed CNTs 2-2 Template synthesis of CNTs 2-3 Nanoindentation Chapter 3 Experimental methods.....36 3-1 Preparation of ferrocene-catalytic CNTs 3-2 Preparation of novel CNT bundles 3-3 Nanoindentation for an individual CNT bundles 3-4 Two-poobe electrical measurement of novel CNT bundles 3-5 Superconducting quantum interference device measurement of the novel CNT bundles 3-6 Structure analysis 3.6.1 X-ray diffraction 3.6.2 Scanning electron microscopy 3.6.3 Transmission electron microscopy 3.6.4 Differential scanning calorimeter 3.6.5 Energy dispersive X-ray 3.6.6 Selected area electron diffraction Chapter 4 Results and Discussion.....47 4-1 Ferrocene-catalyzed CNTs 4-2 Novel CNT bundles 4-3 Mechanical properties of the novel CNT bundles 4-4 Electron transport properties of the novel CNT bundles 4-5 Magnetic properties of the novel CNT bundles Chapter 5 Conclusion.....100 Chapter 6 Suggested Future Work.....102 References.....103

    1. S. Iijima, Nature 354, 56 (1991).
    2. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 347, 354 (1990).
    3. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 318, 162 (1985).
    4. S. Iijima, T. Ichihashi, Nature 363, 603 (1993).
    5. D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605 (1993).
    6. T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, K. Tanigaki, Chem. Phys. Lett. 209, 83 (1993).
    7. T. W. Ebbesen, Ann Rev. Mater. Sci. 24, 235 (1994).
    8. T. W. Ebbesen, P. M. Ajayan, Nature 358, 220 (1992).
    9. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 243, 49 (1995).
    10. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzer, D. T. Cilbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 273, 486 (1996).
    11. M. Endo, CHEMTECH 18, 568 (1988).
    12. M. Endo, Ph.D. thesis, University of Orleans, Orleans, France (1975).
    13. S. D. Robertson, Carbon 10, 221 (1972).
    14. R. T. K. Baker, P. S. Harris, Chemistry and Physics of Carbon vol. 14 (Eds.: P. L. Walker, P. A. Thrower), Marcel Dekker, New York (1978).
    15. C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, M. Nath, CHEMPHYSCHEM 2, 78 (2001).
    16. S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, L. K. Norskov, Nature 427, 426 (2004).
    17. M. D. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33, 883 (1995).
    18. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).
    19. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
    20. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 391, 59 (1998).
    21. T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Nature 391, 62 (1998).
    22. Y. Miyamoto, A. Rubio, M. L. Cohen, S. G. Louie, Phys. Rev. B 50, 4976 (1994).
    23. B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, J. P. Zhang, A. K. Cheetham, C. N. R. Rao, Chem. Phys. Lett. 300, 473 (1999).
    24. O. Stephan, P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert, P. Bernier, P. Lefin, Science 266, 1683 (1994).
    25. Y. Zhang, H. Gu, K. Suenaga, S. Iijima, Chem. Phys. Lett. 279, 264 (1997).
    26. M. Terrones, A. M. Benito, C. Mantega-Diego, W. K. Hsu, O. I. Osman, J. P. Hare, D. G. Reid, H. Terrones, A. K. Cheetham, K. Prassides, H. W. Kroto, D. R. M. Walton, Chem. Phys. Lett. 257, 576 (1996).
    27. M. Glerup, M. Castignolles, M. Holzinger, G. Hug, A. Loiseau, P. Bernier, Chem. Comm., 2542 (2003).
    28. Y. Hao, L. Qingwen, Z. Jin, L. Zhongfan, Chem. Phys. Lett. 380, 347 (2003).
    29. M. Nath, B. C. Satishkumar, A. Govindaraj, C. P. Vinod, C. N. R. Rao, Chem. Phys. Lett. 322, 333 (2000).
    30. P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura, Nature 362, 522 (1993).
    31. S. C. Tsang, P. J. F. Harris, M. L. H. Green, Nature 362, 520 (1993).
    32. S. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, Nature 372, 159 (1994).
    33. Y. K. Chen, A. Chu, J. Cook, M. L. H. Green, P. J. F. Harris, R. Heesom, M. Humphries, J. Sloan, S. C. Tsang, J. F. C. Turner, J. Mater. Chem. 7, 545 (1997).
    34. W. Y. Jang, N. N. Kulkarni, C. K. Shih, Z. Yao, Appl. Phys, Lett. 84, 1177 (2004).
    35. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Appl. Phys. Lett. 75, 3129 (1999).
    36. O. Groening, O. M. Kuettel, Ch. Emmenegger, P. Groening, L. Schlapbach, J. Vac. Sci. Technol. B 18, 665 (2000).
    37. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard, K. Kern, Appl. Phys. Lett. 76, 2071 (2000).
    38. D. H. Robertson, D. W. Brenner, J. W. Mintmire, Phys. Rev. B 45, 12592 (1992).
    39. M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 381, 678 (1996).
    40. C. V. Lier, C. V. Alsenoy, V. V. Doren, P. Greeligs, Chem. Phys. Lett. 326, 181 (2000).
    41. J. P. Salvetat, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, Adv. Mater. 11, 161 (1999).
    42. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Nature 386, 377 (1997).
    43. E. W. Wong, P. E. Sheehan, C. M. Lieber, Science 277, 1971 (1997).
    44. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Phys. Rev. B 58, 14013 (1998).
    45. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Rouff, Science 287, 637 (2000).
    46. Z. W. Pan, S. S. Xie, L. Lu, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang, D. L. Zhang, Appl. Phys. Lett. 74, 3152 (1999).
    47. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan, Science 296, 884 (2002).
    48. C. Nutzenadel, A. Zuttel, D. Chartouni, Louis Schlapbach, Electrochem. Solid-State Lett. 2, 30 (1999).
    49. X. Qin, X. P. Gao, H. T. Yuan, D. Y. Yan, W. L. Gong, D. Y. Song, Electrochem. Solid-State Lett. 3, 532 (2000).
    50. X. P. Gao, Y. Lan, G. L. Pan, F. Wu, J. Q. Qu, D. Y. Song, P. W. Shen, Electrochem. Solid-State Lett. 4, A173 (2001).
    51. G. P. Dai, C. Liu, M. Liu, M. Z. Wang, H. M. Cheng, Nano Lett. 2, 503 (2002).
    52. X. Yan, X. P. Gao, Y. Li, Z. Q. Liu, F. Wu, Y. Shen, D. Y. Song, Chem. Phys. Lett. 372, 336 (2003).
    53. M. Endo, in Filler Katsuyou Jiten, Taisei-sha, Tokyo, Japan, 235 (1994).
    54. M. Endo, M. Shikata, Ohyo Buturi 54, 507 (1985).
    55. C. N. R. Rao, A. Govindaraj, R. Sen, B. C. Satishkumar, Mat. Res. Innovat. 2, 128 (1998).
    56. M. Terrones, A. M. Benito, C. Manteca-Diego, W. K. Hsu, O. I. Osman, J. P. Hare, D. G. Reid, H. Terrones, A. K. Cheetham, K. Trassides, H. W. Kroto, D. R. M. Walton, Chem. Phys. Lett. 257, 576 (1996).
    57. M. Terrones, N. Grobert. J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. D. Cheetham, H. W. Kroto, D. R. M. Walton, Nature 388, 52 (1997).
    58. J. C. Hulteen, C. R. Martin, J. Mater. Chem. 7, 1075 (1997).
    59. R. Parthasarathy, C. R. Martin, Nature 369, 298 (1994).
    60. M. Nishzawa, V. P. Menon, C. R. Martin, Science 268, 700 (1995).
    61. B. B. Lakshmi, P. K. Dorhout, C. R. Martin, Chem. Mater. 9, 857 (1997).
    62. R. V. Partharathy, K. L. N. Phani, C. R. Martin, Adv. Mater. 7, 896 (1995).
    63. G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, Chem. Mater. 10, 260 (1998).
    64. G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Nature 393, 28 (1998).
    65. G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, Langmuir 15, 750 (1999).
    66. A. Moore, Chem. Phys. Carbon 11, 69 (1973).
    67. T. Kyotani, L. Tsai, A. Tomita, Chem. Mater. 8, 2109 (1996).
    68. B. K. Prahan, T. Toba, T. Kyotani, A. Tomita, Chem. Mater. 10, 2510 (1998).
    69. N. Grobert, W. K. Hsu, Y. Q. Zhu, J. P. Hare, H. W. Kroto, D. R. M. Walton, M. Terrones, H. Terrones, Ph. Redlich, M. Ruhle, R. Escudero, F. Morales, Appl. Phys. Lett. 75, 3363 (1999).
    70. B. C. Satishkumar, A. Govindaraj, P. V. Vanitha, A. K. Raychaudhuri, C. N. R. Rao, Chem. Phys. Lett. 362, 301 (2002).
    71. X. Li, B. Bhushan, Mater. Characterization 28, 11 (2002).
    72. D. Tabor, The hardness of metals, Oxford Univ. Press, Oxford (1951).
    73. B. Bhushan, Handbook of micro/nanotribology 2nd ed., Boca Raton (FL), CRC Press (1999).
    74. J. B. Pethica, R. Hutchings, W. C. Oliver, Philos. Mag. A 48, 593 (1983).
    75. W. C. Oliver, G. M. Pharr, J. Mater. Res. 7, 1564 (1992).
    76. G. M. Pharr, Mater. Sci. Eng. A 253, 151 (1998).
    77. S. I. Bulychev, V. P. Alekhin, M. Kh. Shorshorov, A. P. Ternovskii, G. D. Shnyrev, Zavod. Lab. 41, 1137 (1975).
    78. J. B. Pethica, W. C. Oliver, Thin films: stresses and mechanical properties, Materials Research society Symposium Preceedings vol. 130, Pittsburgh (PA), Materials Research Society, 13 (1989).
    79. S. A. S. Asif, J. B. Pethica, Thin films: stresses and mechanical properties, VI. Materials Research society Symposium Preceedings vol. 436, Pittsburgh (PA), Materials Research Society, 201 (1997).
    80. I. N. Senddon, Int. J. Eng. Sci. 3, 47 (1965).
    81. Y. F. Hsiou, Y. J. Yang, L. Stobinski, W. Kuo, C. D. Chen, Appl. Phys. Lett. 84, 984 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE