簡易檢索 / 詳目顯示

研究生: 賴柏均
Lai, Po Chun
論文名稱: 鐵酸鉍鐵電薄膜添加釓(Gd)、鉻(Cr)後 照光效應研究
Photochemical effect on Gd, Cr co-doped BiFeO3 ferroelectric thin film
指導教授: 胡塵滌
Hu, Chen Ti
呂正傑
Leu, Ching Chich
口試委員: 李三保
楊聰仁
吳錫侃
呂正傑
胡塵滌
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 141
中文關鍵詞: 鐵酸鉍鐵電薄膜
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究照光輔助熱製程對溶膠-凝膠法(sol-gel)鍍製BiFeO3鐵電薄膜添加釓(Gd)、鉻(Cr)的光化學效應。本實驗室學姊研究證實光化學效應可以應用於鐵酸鉍薄膜上並提升其電性,又許多文獻提及共摻雜之鐵酸鉍薄膜對於性質的改良,因此本次實驗結合兩者,並且探討其不同摻雜條件對光化學效應的影響及光化學效應對於結晶行為及電性的可能作用機制。
    由個別元素之溶液的UV-Vis光譜得知在三種光源(Hal、UVA、UVC)之吸收強度趨勢中,預期於混合溶液中增加Bi元素及減少Cr元素比例有助於UVC光吸收強度提升,因此薄膜成分參數設定兩種: (X組)Bi0.9Gd0.1Fe0.975Cr0.025O3; 及(Y組)Bi0.9*Gd0.1Fe0.98Cr0.02O3(補償10% Bi,減少Cr成份比),比較對增強UVC照光效應趨勢。
    FTIR分析結果中,發現UVC照光輔助熱製程可以加速薄膜有機物與氮化物分解,尤以Y組分解情況明顯比X組良好,可以證實UVC光的照光效應受到摻雜條件影響;從EDS成分分析中發現,經UVC光照光輔助的薄膜經焦化處理後,較能保留鉍元素避免因形成金屬態鉍後高溫揮發,可以預期晶體結構形成會較為完善。拉曼分析中,發現經UVC照光輔助熱製程的薄膜有助於晶體結構的形成(rhombohedrally distorted perovskite),對應到XRD與SEM表面樣貌發現結晶度明顯提升之趨勢,應有助於鐵電極化與漏電流性質的改良。
    另一方面,XPS分析發現,經UVC照光輔助熱製程的薄膜,有助於摻雜元素進入其取代位置(Gd取代Bi,Cr取代Fe),越多Gd、Cr共摻雜會使(110)(1ī0)之優選方向更為明顯,此優選方向亦能改善鐵電極化與鐵磁性質。
    根據各項分析結果與參考相關文獻,不同的吸光強度可能影響到光源與薄膜之間的效應,並且推測本研究之薄膜在溶膠-凝膠製程中受短紫外光(UVC)光照產生化學效應,促進薄膜內部有機物與氮化物分解,加速成核並在退火時得到較佳結晶性,助於晶體結構的形成,進而影響其電性與磁性的表現。


    目錄 摘要 1 第1章 緒論 11 1-1 前言 11 1-2 研究動機與方向 12 第2章 文獻回顧 14 2-1 鐵電薄膜之簡介 14 2-1-1 鐵電材料晶體結構(1) 14 2-1-2 鐵電特性與原理(5)(6) 14 2-2 極化特性與電性簡介 17 2-2-1 極化現象與機制 17 2-2-2 漏電流機制(10-14),(17) 18 2-3 磁性原理簡介(19-22) 20 2-3-1 磁性的來源 20 2-3-2 磁性物質分類 21 2-3-3 磁性特徵溫度 23 2-3-4 磁滯迴路 23 2-4 鐵酸鉍(BiFeO3)系統 24 2-4-1 鐵酸鉍晶體結構性質 24 2-4-2 鐵酸鉍研究文獻回顧 26 2-4-2-1 鐵酸鉍摻雜稀土元素或共摻雜之研究文獻 27 2-5 光化學反應之相關研究 28 2-5-1 光誘導結晶效應(Photo-Induced Crystallization) 28 2-5-2 鐵電薄膜與紫外光輔助製程 30 第3章 實驗步驟 45 3-1 基板製備 45 3-1-1 擴散阻絕層及黏著層之製備 45 3-1-2 鉑金底電極之製備 46 3-2 鐵酸鉍薄膜之製備 46 3-2-1 實驗藥品 46 3-2-2 製備鐵酸鉍添加釓(Gd)、鉻(Cr)之溶膠 47 3-2-3 鐵酸鉍薄膜的鍍製與照光輔助製程 48 3-2-4 鐵酸鉍的高溫結晶熱處理 49 3-2-5 試片代號 49 3-3 紫外光-可見光光譜分析(UV-vis. Spectrum) 50 3-4 鐵酸鉍薄膜特性分析 51 3-4-1 物性分析 51 3-4-2 電性分析 52 第4章 結果與討論 57 4-1 UV-Vis光譜分析個別元素與混和溶膠趨勢探討 57 4-2 照光輔助熱製程對X;Y鐵酸鉍薄膜之影響 59 4-2-1 傅立葉轉換紅外線光譜分析(FTIR Spectrum) 59 4-2-2 拉曼光譜儀(Raman) 61 4-2-3 XRD晶體結構分析 62 4-2-4 表面微觀結構及橫截面分析(SEM) 66 4-2-5 化學成分分析(EDS) 68 4-2-6 X光光電子質譜儀分析(XPS) 69 4-2-7 電流密度量測(I-V) 72 4-2-8 鐵電特性量測 74 4-2-9 磁性分析 75 4-3 參考文獻比較 77 第5章 結論 127 參考文獻 129

    (1) 陳銘森, "鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究". 清華大學博士論文, (1996).
    (2) Schwartz, R.W., Chemical solution deposition of perovskite thin films. Chemistry of materials, 1997. 9(11): p. 2325-2340.
    (3) Kamlah, M., Ferroelectric and ferroelastic piezoceramics–modeling of electromechanical hysteresis phenomena. Conti199nuum Mechanics and Thermodynamics, 2001. 13(4): p. 219-268.
    (4) 江長凌,林煥祐,朱智謙,”半導體製程中高介電(High K)材料的介紹”,台灣大學化研所.
    (5) 鍾為烈,鐵電體物理學 (科學出版社,1996).
    (6) M. E. Lines and A. M.Glass, Principle and applications of ferroelectrics and related materials, (Oxford University press. New York,2001).
    (7) 鐘金峰,”Preparation of BiFeO3 thin films by chemical solution deposition method “,清華大學碩士論文 (2006)
    (8) Moulson, A.J. and J.M. Herbert, Electroceramics: Materials, Properties, Applications2003: Wiley.
    (9) W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd Ed. , John Wiley and Sons, New York, 1976.
    (10) 謝煜弘,“電子材料”,新文京,p206-p217,(2005).
    (11) Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae, and M. S. Jang, “Schottky Barrier Effects in Electronic Conduction of Sol-Gel derived Lead Zirconate Titanate Thin Film Capactors” ,Journal of Applied Physics, Vol. 84 No.9 p5005-5011(1998).
    (12) I. Stolichnov, and A. Tagantsev, “Space-Charge Influenced-Injection Model for Conduction on Pb(ZrxTi1-x)O3 Thin Film”, Journal of Applied Physics, Vol. 84 No.6 p3216-3225 (1998).
    (13) W. L. Warren, D. Dimos, and R. M. Waser, “Degradation Mechanisms in Ferroelectric and High-Permittivity Perovskites”, MRS Bulletin, July p.40-45 (1996).
    (14) 李雅明,”固態電子學”,全華科技 (1995)
    (15) M. Ohring, “The Materials Science of Thin Films, published by Academic Press”, Inc, (1992).
    (16) D. Ivanova, M. Caron, L. Ouellet, S Blain, N.Hendrick, J. Currie, ” Structural and Dielectric Preoperties of Spin-On Barium Strontium Titanate Thin Films”, J. Appl. Phys., 77[6]2666-2671 .
    (17) 李雅明, 吳世全, and 陳宏名, 鐵電記憶元件, 電子月刊第二卷第九期.
    (18) Wolf, S. and R. Tauber, Silicon processing for the VLSI era (2000), Lattice Press.
    (19) K. Charles, Introduction to solid state physics, 7th ed. New York: John Wilry & Sons, 1996.
    (20) S. Chikazumi著, 張煦, and 李學養合譯, 磁性物理學. 臺北市: 聯經出版事業公司, 1982.
    (21) 李景明,張慶瑞, 磁性技術手冊: 台灣磁性技術協會, 2002.
    (22) J. A. C. Bland and B. Heinrich, Ultrathin Magnetic Structure I Springer-Verlag, 1994.
    (23) 江明彥, Synthesis and Magnetic Investigation of NiO/NiFe2O4 Nanocomposites: 南台科技大學碩士論文, 2005.
    (24) Kubel, F. and H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallographica Section B: Structural Science, 1990. 46(6): p. 698-702.
    (25) J. R. Teague, R. Gerson, and W. J. James, "Dielectric hysteresis in single crystal BiFeO3," Solid State Communications, vol. 8, pp. 1073-1074, 1970.
    (26) J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures," Science, vol. 299, pp. 1719-1722, March 14, 2003 2003.
    (27) S. H. Jo, S. G. Lee, and S. H. Lee, “Structural and pyroelectric properties of sol-gel derived multiferroic BFO thin films,” Materials Research Bulletin, vol. 47, no. 2, pp. 409–412, 2012.
    (28) F. Yan, T.J. Zhu, M.O. Lai, L. Lu, Scr. Mater. 7 (2010) 780.
    (29) A.J. Hauser, J. Zhang, L. Mier, R.A. Ricciardo, P.M. Woodward, T.L. Gustafson, L.J.
    (30) Brillson, F.Y. Yang, Appl. Phys. Lett. 92 (2008) 222901.
    (31) S.U. Lee, S.S. Kim, M.H. Park, J.W. Kim, H.K. Jo, W.J. Kim, Appl. Surf. Sci. 254 (2007)1493.
    (32) 陳三元, 強介電薄膜之液相化學法製作. 工業材料, 1995. 108: p. 100-111.\
    (33) Xu Xue, Guoqiang Tan, Wenlong Liu, Huijun Ren,”Structural, electrical and magnetic properties of (Bi0.9RE0.1)(Fe0.97Co0.03)O3 (RE= Nd and Gd) thin films” Materials Research Bulletin, 52(2014)143-150
    (34) J.W.Kim, S.S.Kim, H.J.Kim,W.J.Kim,C.M.Raghavan, D.Do, M.H.Lee, T.K.Song, M.H.Kim “Enhancement of ferroelectricity in gadolinium (Gd) and transition metal (Ni, Co, Cr) Co-doped BiFeO3 thin films via a chemical solution deposition technique” J Electroceram(2013)31:13-18
    (35) Wenlong Liu, Guoqiang Tan, Xu Xue, Guohua Dong, Huijun Ren, Ao Xia “Phase transition and enhanced multiferroic properties of (Sm, Mn and Cr) co-doped BiFeO3 thin films” Ceramics International(2014)00587-5
    (36) H. Uchida, R. Ueno, H. Nakaki, H. Funakubo and S. Koda, Jpn. J. Appl. Phys. 44 (2005), p. 561.
    (37) Hurui Yan, Hongmei Deng, Nuofan Ding, Jun He, Lin Peng, Lin Sun, Pingxiong Yang, Junhao Chu “Influence of transition elements doping on structural, optical and magnetic properties of BiFeO3 films fabricated by magnetron sputtering” Material Letters(2013)123-125
    (38) R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary and A. Banerjee, J Phys Condens Matter 20 (2008), pp. 045218–045223.
    (39) D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, and S. Fusil, "Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals," Physical Review B, vol. 76, p. 024116, 2007.
    (40) H. Schmid, "Die synthese von boraziten mit hilfe chemischer transportreaktionen," Journal of Physics and Chemistry of Solids, vol. 26, pp. 973-976, 1965.
    (41) J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures," Science, vol. 299, pp. 1719-1722, March 14, 2003 2003.
    (42) I. Sosnowska, T. Peterlinneumaier, and E. Steichele, "SPIRAL MAGNETIC-ORDERING IN BISMUTH FERRITE," Journal of Physics C-Solid State Physics, vol. 15, pp. 4835-4846, 1982.
    (43) G. Catalan and J. F. Scott, "Physics and Applications of Bismuth Ferrite," Adv. Mater., vol. 21, pp. 2463-2485, Jun 2009.
    (44) Y. H. Chu et. al., Mater. Today, 2007.
    (45) C. Ederer and N. A. Spaldin, "Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite," Physical Review B, vol. 71, Feb 2005.
    (46) Y. Wu, J.-g. Wan, C. Huang, Y. Weng, S. Zhao, J.-m. Liu, and G. Wang, "Strong magnetoelectric coupling in multiferroic BiFeO3-Pb(Zr0.52Ti0.48)O3 composite films derived from electrophoretic deposition," Applied Physics Letters, vol. 93, pp. 192915-3, 2008.
    (47) Imai, H., et al., Ultraviolet-reduced reduction and crystallization of indium oxide films. Journal of applied physics, 1999. 85(1): p. 203-207.
    (48) Arai, K., et al., Two‐photon processes in defect formation by excimer lasers in synthetic silica glass. Applied Physics Letters, 1988. 53(20): p. 1891-1893.
    (49) Glinka, Y.D., S.-H. Lin, and Y.-T. Chen, Two-photon-excited luminescence and defect formation in SiO2 nanoparticles induced by 6.4-eV ArF laser light. Physical Review B, 2000. 62(7): p. 4733.
    (50) Primak, W., Determination of small dilatations and surface stress by birefringence measurements. Surface Science, 1969. 16: p. 398-427.
    (51) Fiori, C. and R. Devine, Evidence for a wide continuum of polymorphs in a-SiO2. Physical Review B, 1986. 33(4): p. 2972.
    (52) Chakarian, V., et al., Formation of surface F centers on CaF2/Si (111). Physical Review B, 1993. 48(24): p. 18332.
    (53) H. Imai, A. Tominaga, N. Asakuma et al., "Ultraviolet-reduced reduction and crystallization of indium oxide films,"Journal of Applied Physics 85, 203 (1999)
    (54) N. Asakuma, T. Fukui, H. Hirashima et al., "Ultraviolet-laser-induced crystallization of sol-gel derived inorganic oxide films," Journal of Sol-Gel Scienceand Technology 19, 333 (2000)
    (55) N. Asakuma, H. Hirashima, and H. Imai, "Photocrystallization of amorphous ZnO,"Journal of Applied Physics92, 5707 (2002)
    (56) N. Asakuma, H. Hirashima, and H. Imai, "Photocrystallization of amorphous ZnO,"Journal of Applied Physics92, 5707 (2002)
    (57) N. Asakum, H. Hirashima, M. Toki et al., "Crystallization and reduction of sol-gel-derived zinc oxide films by irradiation with ultraviolet lamp,"Journal of Sol-Gel Scienceand Technology 26, 181 (2003)
    (58) Imai, H., et al., Ultraviolet-reduced reduction and crystallization of indium oxide films. Journal of applied physics, 1999. 85(1): p. 203-207.
    (59) Imai, H., et al., Ultraviolet-laser-induced crystallization of sol-gel derived indium oxide films. Journal of sol-gel science and technology, 1998. 13(1-3): p. 991-994.
    (60) J. J. Yu, J. Y. Zhang, and I. W. Boyd, "Formation of stable zirconium oxide on silicon by photo-assisted sol-gel processing," Applied Surface Science 186, 190 (2002)
    (61) Nagase, T., T. Ooie, and J. Sakakibara, A novel approach to prepare zinc oxide films: excimer laser irradiation of sol–gel derived precursor films. Thin Solid Films, 1999. 357(2): p. 151-158.
    (62) Kaori Nishizawa, , Takeshi Miki, Kazuyuki Suzuki, Kazumi Kato ”Photo-assisted crystallization of zirconia thin films and their electrical evaluation” Thin Solid Films,2007,515(7-8) p. 4004–4010
    (63) Q. Fang, J. Y. Zhang, I. W. Boyd et al., "High-k dielectrics by UV photo-assisted chemical vapour deposition," Microelectronic Engineering 66, 621 (2003)
    (64) Kim, C.J., et al., Investigation of the drying temperature dependence of the orientation in sol–gel processed PZT thin films. Journal of materials science, 1997. 32(5): p. 1213-1219.
    (65) Asakuma, N., et al., Ultraviolet-laser-induced crystallization of sol-gel derived inorganic oxide films. Journal of sol-gel science and technology, 2000. 19(1-3): p. 333-336
    (66) Li, A., et al., Effects of processing on the characteristics of SrBi2Ta2O9 films prepared by metalorganic decomposition. Journal of applied physics, 2000. 88(2): p. 1035-1041.
    (67) Theodor Schneller, Rainer Vaser, Marija Kosec, David Payne”Chemical Solution Deposition of Fuctional Oxide Thin Films”2013.page.125
    (68) Bhaskar, S., et al., Influence of Precursor Solutions on the Ferroelectric Properties of Sol‐Gel‐Derived Lanthanum‐Modified Lead Titanate (PLT) Thin Films. Journal of the American Ceramic Society, 2004. 87(3): p. 384-390.
    (69) Yang, C.C., et al., Preparation of (100)‐oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb (Zr0. 53Ti0. 47) O3. Applied Physics Letters, 1995. 66(20): p. 2643-2645.
    (70) Park, G.-T., et al., Orientation control of sol-gel-derived lead zirconate titanate film by addition of polyvinylpyrrolidone. Journal of materials research, 2005. 20(4): p. 882-888.
    (71) Hwang, J.-S., et al., The effect of intermediate anneal on the ferroelectric properties of direct-patternable PZT films. Sensors and Actuators A: Physical, 2005. 117(1): p. 137-142.
    (72) Seiko Epson, Kamisuwa, Nagano” Reduced thermal budget process for SBT thin film in planer type stack cell FeRAMs” Integrated Ferroelectrics(2002)48(1):193-202
    (73) Hwang, J.-Y., et al., UV-exposure effect on ferroelectricity of the sol-gel processed PZT thin film. Integrated Ferroelectrics, 2004. 62(1): p. 97-103.
    (74) LEE, S.-A., et al., A Study of UV-Photolysis Effects on Ferroelectricity in PZT Thin Films. Integrated Ferroelectrics, 2004. 64(1): p. 201-206.
    (75) Kumar, S., et al., Control of microstructure and functional properties of PZT thin films via UV assisted pyrolysis. Journal of sol-gel science and technology, 2007. 42(3): p. 309-314.
    (76) Huang, Z., Q. Zhang, and R. Whatmore, Structural development in the early stages of annealing of sol–gel prepared lead zirconate titanate thin films. Journal of applied physics, 1999. 86(3): p. 1662-1669.
    (77) Wu, A., et al., Early stages of crystallization of sol-gel-derived lead zirconate titanate thin films. Chemistry of materials, 2003. 15(5): p. 1147-1155.
    (78) Chen, S.Y. and I.W. Chen, Temperature–Time Texture Transition of Pb (Zr1− xTix) O3 Thin Films: I, Role of Pb‐rich Intermediate Phases. Journal of the American Ceramic Society, 1994. 77(9): p. 2332-2336.
    (79) Chen, S.-Y., Texture evolution and electrical properties of oriented PZT thin films. Materials chemistry and physics, 1996. 45(2): p. 159-162.
    (80) Wu, A., et al., Effect of lead zirconate titanate seeds on PtxPb formation during the pyrolysis of lead zirconate titanate thin films. Journal of the American Ceramic Society, 2002. 85(3): p. 641-646.
    (81) Gong, W., et al., Effect of pyrolysis temperature on preferential orientation and electrical properties of sol-gel derived lead zirconate titanate films. Journal of the European Ceramic Society, 2004. 24(10): p. 2977-2982.
    (82) Park, H.-H., et al., Electrical and ferroelectric properties of SBT thin films formed by photochemical metal-organic deposition. Sensors and Actuators B: Chemical, 2007. 126(1): p. 289-293.
    (83) 張勁燕”電子材料Electronic Materials” 1999,chap5 page.133
    (84) Habouti, S., C.-H. Solterbeck, and M. Es-Souni, UV assisted pyrolysis of solution deposited BiFeO3 multiferroic thin films. Effects on microstructure and functional properties. Journal of sol-gel science and technology, 2007. 42(3): p. 257-263.
    (85) Ching-Chich Leu, Ching-Pin Hsu, Cin-Guan Hong, Chen-Ti Hu”Photochemical-induced self-seeding effect on lead zirconate titanate thin film” Journal of Materials Chemistry,(2011)21,12991
    (86) Yi Liu, Ruzhong Zuo∗, Shishun Qi “Controllable preparation of BiFeO3@carbon core/shell nanofibers with enhanced visible photocatalytic activity” Journal of Molecular Catalysis A: Chemical(2013)1-6
    (87) Zhi Yong Bao, Xin Liua, Jiyan Dai, Yucheng Wud, Yuen Hong Tsang, Dang Yuan Lei “In situ SERS monitoring of photocatalytic organic decomposition usingrecyclable TiO2-coated Ag nanowire arrays” Applied Surface Science(2014)351-357
    (88) WikipediA,” Mathematical definitions,Absorbance”(2015)
    (89) Hardy, A., et al., Effects of precursor chemistry and thermal treatment conditions on obtaining phase pure bismuth ferrite from aqueous gel precursors. Journal of the European Ceramic Society, 2009. 29(14): p. 3007-3013.
    (90) Chen, Z., et al., Low-temperature preparation of lanthanum-doped BiFeO3 crystallites by a sol–gel-hydrothermal method. Ceramics International (2011) 37: p. 2359–2364.
    (91) Yang, H., et al., Size-controlled synthesis of BiFeO3 nanoparticles by a soft-chemistry route. Journal of sol-gel science and technology, 2011. 58(1): p. 238-243.
    (92) Reddy, V.A., N.P.P. , and R.N. , Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3nano-particles. Journal of Alloys and Compounds, (2012) 543: p. 206–212.
    (93) Petit, S., et al., Interpretation of the infrared spectrum of the NH4+-clays: application to the evaluation of the layer charge. Clay Minerals (t 999). 34: p. 543-549.
    (94) Aguiar, E., et al., Low-temperature synthesis of nanosized bismuth ferrite by the soft chemical method. Ceramics International, 2013. 39(1): p. 13-20.
    (95) Thomson, M.A., P.J. Melling, and A.M. Slepski, Real-time monitoring of isocyanate chemistry using a fiber-optic FTIR probe. POLYMER PREPRINTS-AMERICA-, 2001. 42(1): p. 310-311.
    (96) Rodrigues, H.O., et al., BiFeO3ceramic matrix with Bi2O3or PbO added: M¨ ossbauer, Raman and dielectric spectroscopy studies. Physica B, (2011) 406: p. 2532–2539.
    (97) Duan, Z., et al., Lattice dynamics and dielectric functions of multiferroic BiFeO3/c-sapphirefilms determined by infrared reflectance spectra and temperature-dependent Raman scattering. Thin Solid Films, (2012). 525 p. 188–194.
    (98) Yan, F., M. Lai, and L. Lu, Domain structure and piezoelectric response in lanthanide rare earth-substituted multiferroic BiFeO3 thin films. Journal of Physics D: Applied Physics, 2012. 45(32): p. 325001.
    (99) Raghavan, C., J. Kim, and S. Kim, Structural and ferroelectric properties of chemical solution deposited (Nd, Cu) co-doped BiFeO3 thin film. Ceramics International, 2013. 39(4): p. 3563-3568
    (100) Y. Yang, J.Y.Sun, K.Zhu , Y.L.Liu , J.Chen , X.R.Xing ” Raman studyofBiFeO3 with differentexcitationwavelengths” Physica B(2009)171-174
    (101) Speranta Tanasescu, Alina Botea and Adelina Ianculescu “Effects of Doping and Oxygen Nonstoichiometry on the Thermodynamic Properties of Some Multiferroic Ceramics” Ferroelectrics - Physical Effects(2011)15 page347.
    (102) A. Lahmar, S. Habouti, M. Dietze, C.-H. Solterbeck, and M. Es-Souni ” Effects of rare earth manganites on structural, ferroelectric, and magneticproperties of BiFeO3 thin films” APPLIED PHYSICS LETTERS(2009) 94, 012903
    (103) F Yan, M O Lai and Li Lu “Domain structure and piezoelectric response in lanthanide rare earth-substituted multiferroic BiFeO3mthin films” JOURNAL OF PHYSICS D: APPLIED PHYSICS(2012)45,325001
    (104) Gurmeet Singh Lotey, N. K. Verma “Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size” Journal of Nanoparticle Research(2012) 14:742
    (105) Annapu Reddy, V., N. Pathak, and R. Nath, Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles. Journal of Alloys and Compounds, 2012. 543: p. 206-212
    (106) Nabanita Dutta, S.K.Bandyopadhyay*, Subhasis Rana, Pintu Sen, A.K.Himanshu and P.K.Chakraborty” High values of Ferroelectric polarization and magnetic susceptibility in BFO nanorods”
    (107) Sung Hwan Lim” Synthesis and Characterization of Multiferroic Thin Films”(2008) page77.
    (108) Koiwa, I., et al., Effects of H2 Sintering and Pt Upper Electrode on Metallic Bi Content in Sr0.9Bi2.1Ta2O9 Thin Films for Ferroelectric Memories Prepared by Sol-Gel Method. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1 REGULAR PAPERS SHORT NOTES AND REVIEW PAPERS, 1998. 37: p. 5192-5197.
    (109) Yoshitaka Nakamura, Seiji Nakashima and Masanori Okuyama” BiFeO3 Thin Films Prepared by Chemical Solution Deposition with Approaches for Improvement of Ferroelectricity” (2011)
    (110) Liang, Y.-C., et al., Annealing-induced changes in the nanoscale electrical homogeneity of bismuth ferrite dielectric thin films. Ceramics International, 2011. 37(7): p. 2391-2396
    (111) Lee, D., et al., Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films. Applied Physics Letters, 2005. 86(22): p. 222903.
    (112) Xu Xue, Guoqiang Tan∗, Hangfei Hao, Huijun Ren” Comparative study on substitution effects in BiFeO3 thin films fabricated on FTO substrates by chemical solution deposition”(2013)432-438
    (113) Liang, Y.-C., Structural and Nanoscale Electrical Properties of Bismuth Ferrite Thin Films Annealed in Forming Gas. Physics Procedia, 2012. 32: p. 314-319.
    (114) Jaewan Chang, Hyun M. Jang, and Sang-Koog Kim*” A Possible Origin of Ferromagnetism in Epitaxial BiFeO3 thin Films”Journal of Magnetics(2006)11(3),108-110
    (115) F. Gao, C. Cai, Y. Wang, S. Dong, X. Y. Qiu et al” Preparation of La-doped BiFeO3 thin films with Fe2+ ions on Si substrates”Journal of Applied Physics(2006) 99, 094105
    (116) Ostos, C., et al., Highly textured Sr, Nb co-doped BiFeO3 thin films grown on SrRuO3/Si substrates by rf-sputtering. Journal of applied physics, 2011. 110(2): p. 024114.
    (117) Fang, L., et al., Experimental and theoretical evidence of enhanced ferromagnetism in sonochemical synthesized BiFeO3 nanoparticles. Applied Physics Letters, 2010. 97(24): p. 242501.
    (118) X. H. Zhu, E. Defaÿ, Y. Lee, B. André, M. Aïd, J. L. Zhu, D. Q. Xiao, and J. G. Zhu” High permittivity Bi 24 Fe 2 O 39 thin films prepared by a low temperature process” Applied Physics Letters(2010) 97, 232903
    (119) C. Ostos, O. Raymond, N. Suarez-Almodovar, D. Bueno-Baqués, L. Mestres et al.” Highly textured Sr, Nb co-doped BiFeO3 thin films grown on SrRuO3/Si substrates by rf- sputtering” J. Appl. Phys. 110, 024114 (2011)
    (120) R. H. Yu, S. Basu, Y. Zhang, A. Parvizi-Majidi, and John Q. Xiao “Pinning effect of the grain boundaries on magnetic domain wall in FeCo-based magnetic alloys” JOURNAL OF APPLIED PHYSICS(1999)85-9
    (121) D. Y. Wang, N. Y. Chan, R. K. Zheng, C. Kong, D. M. Lin, J. Y. Dai, H. L. W. Chan, and S. Li” Multiferroism in orientational engineered (La, Mn) co-substituted BiFeO3 thin films” JOURNAL OF APPLIED PHYSICS 109, 114105 (2011)
    (122) Shahzad Hussain, S.K. Hasanain, G. Hassnain Jaffari, S. Ismat Shah” Thickness dependent magnetic and ferroelectric properties of LaNiO3 buffered BiFeO3 thin films” Current Applied Physics 15 (2015) 194-200
    (123) C. Nayek, A. Tamilselvan, Ch. Thirmal, P. Murugavel, and S. Balakumar” Origin of enhanced magnetization in rare earth doped multiferroic bismuth ferrite” Journal of Applied Physics 115, 073902 (2014)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE