研究生: |
薛裕安 Hsueh, Yu-An |
---|---|
論文名稱: |
開發氣溶膠技術以合成金屬-有機骨架與其衍生混成式奈米結構觸媒材料作為二氧化碳氫化反應之應用 Aerosol-Assisted Synthesis of Metal-Organic Framework-Derived Hybrid Nanomaterials for CO2 Hydrogenation |
指導教授: |
蔡德豪
Tsai, De-Hao |
口試委員: |
潘詠庭
Pan, Yung-Tin 呂世源 Lu, Shih-Yuan 李岱洲 Lee, Tai-Chou |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 金屬有機骨架 、氣溶膠 、銅 、二氧化碳 、一氧化碳 、甲醇 |
外文關鍵詞: | Metal-organic framework, Aerosol, copper, CO2, CO, MeOH |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著溫室效應的日漸嚴重,對於溫室氣體中的主要成分二氧化碳之減量問題也愈加受到重視,而二氧化碳再利用主要可分為碳捕捉與儲存後使用以及碳捕捉後直接反應兩大面向,本研究選用碳捕捉後直接反應方式,探討二氧化碳於直接氫化反應之應用。
第一部分的研究為金屬-有機骨架衍生之混成式奈米材料在逆水氣反應上之催化。逆水氣反應(Reverse water-gas shift, RWGS)是以大氣中的二氧化碳作為原料來選擇性氫化,從而獲得之一氧化碳將進一步生產出各種具有高附加價值之化學品,因此十分具有發展的潛力。在這部分的研究工作中,我們開發了一種透過氣溶膠技術蒸發誘導來自組裝生成金屬-有機骨架(Metal-Organic Frameworks, MOFs),並利用衍生之Cu@CeO2混成式奈米觸媒作為RWGS反應之催化劑。我們透過X-ray diffraction、Brunauer-Emmett-Teller表面積分析、氫氣程溫還原、二氧化碳程溫脫附、N2O化學吸附分析和掃描式電子顯微鏡技術交互分析所開發出之奈米觸媒特性,以及探討不同金屬比例下MOF衍生之Cu@CeO2混成式奈米觸媒於RWGS反應的活性和穩定性。我們發現隨著觸媒之Cu/Ce原子比降低,金屬分散度和比表面積均得到提升。具有低Cu含量的MOF衍生Cu@CeO2奈米觸媒在低溫下時對RWGS反應顯示出高選擇率、足夠的操作穩定性以及優異的催化活性(i.e., TOFCO2 = 0.1635 s-1 at 400 °C),顯示CeO2奈米粒子團簇的加入增強了MOF衍生之混成式奈米觸媒的活性以及穩定性。
在本研究的第二部份中,沿用第一部分之合成方法,研究金屬-有機骨架衍生之混成式奈米材料在二氧化碳/一氧化碳加氫甲醇化反應上之催化。甲醇作為高價值的C1化學品,因此期望可透過二氧化碳來高效率地轉化為甲醇,且透過加入一氧化碳與二氧化碳一同與氫氣反應,探討二段式反應:逆水氣反應(二氧化碳先行部分轉化成一氧化碳)-加氫甲醇化的潛力。本研究利用氣溶膠技術蒸發誘導自組裝來生成銅鋅雙金屬之金屬-有機骨架,結合了氧化鋁奈米粒子團簇,透過熱處理形成Cu-ZnO擔載於Al2O3之雜化奈米結構。我們透過X-ray diffraction、Brunauer-Emmett-Teller表面積分析、氫氣程溫還原、二氧化碳程溫脫附、N2O化學吸附分析和掃描式電子顯微鏡技術交互分析所開發出之奈米觸媒特性。結果顯示加入Al2O3有助於增加活性金屬表面積以及增加表面金屬的分散度,形成Cu、ZnO奈米微晶分散良好的CuZn@Al2O3混成式奈米粒子,其中Cu作為活性物質,ZnO則提供鹼性位點來吸附二氧化碳。我們發現銅晶徑小且具有高活性金屬表面積之CuZn@Al2O3混成式奈米粒子對於二氧化碳/一氧化碳加氫甲醇化反應顯示出相當高的甲醇選擇性以及甲醇空間產率,顯示Cu-Zn-O界面增強了MOF衍生之混成式奈米觸媒對於二氧化碳/一氧化碳加氫甲醇化反應的活性。
此研究為氣溶膠蒸發誘導自組裝開發MOF衍生之奈米結構材料應用於碳捕捉後直接反應之催化劑設計開闢了新的視野,希望開發出新型的材料製備技術用以生成金屬-有機骨架之衍生觸媒應用在二氧化碳相關之能源科技,並提升二氧化碳之應用價值。
As the greenhouse effect becomes more and more serious, more attention has been paid to the reduction of carbon dioxide in the atmosphere, which is one of the main components of greenhouse gases. The utilization of emitted carbon dioxide can be divided into two major aspects: carbon capture & storage and carbon capture & utilization. In this research work, we aim to develop a new type of material synthesis approach to obtain metal-organic frameworks and its derived catalysts, which can be used for the application of catalytic carbon dioxide hydrogenation, a carbon dioxide capture & utilization technology.
In first part, an aerosol spray-drying method followed by a powder-form thermal treatment is employed as an effective route to preparing metal-organic framework (MOF)-derived Cu/CeO2 nanostructured materials. X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, H2-temperature programmed reduction, CO2-temperature programmed desorption, N2O chemisorption and scanning electron microscopy are employed complementarily for the characterization of material properties of the developed nanocatalysts. The results show both metal surface area and metal dispersion were enhanced by decreasing Cu/Ce atomic ratio of the hybrid material. Incorporation of CeO2 nanoparticle cluster enhanced both activity and stability of the MOF-derived nanostructured catalysts. In addition to high selectivity and sufficient operation stability toward RWGS, a superior high catalytic activity under a relatively low-temperature operation was achievable (i.e., TOFCO2 = 0.1635 s-1 at 400 °C).
On the basis of the development of the synthesis method, the catalysis of hybrid nanomaterials derived from metal-organic frameworks in combined (CO2 + CO) hydrogenation to methanol is studied in the second part of the article. Bimetallic CuZn metal-organic framework and its derived nanostructured materials are synthesized by aerosol-assisted method followed by a powder-form thermal treatment. X-ray diffraction, Brunauer-Emmett-Teller surface area analysis, H2-temperature programmed reduction, CO2-temperature programmed desorption, N2O chemisorption analysis and scanning electron microscopy are employed complementarily for the characterization of material properties of the developed nanocatalysts. The result shows both metal surface area and metal dispersion were enhanced with the presence of Al2O3 nanoparticle cluster support. CuZn@Al2O3 hybrid nanoparticles with low copper crystal size and high active metal surface area show high selectivity and space time yield of methanol toward combined (CO2 + CO) hydrogenation to methanol. The result imply that the Cu-Zn-O interface enhanced the activity of MOF-derived hybrid nanocatalysts for the reaction.
The present development for MOF-derived nanostructured materials produced by using an aerosol-based evaporation-induced self-assembly method opens up opportunities for the design of nanostructured catalysts useful for a variety of applications in CO2 capture and utilization.
[1] D. Kuch, Fixing climate change through carbon capture and storage: Situating industrial risk cultures, Futures 92 (2017) 90-99.
[2] D.A. Ussiri, R. Lal, Carbon sequestration for climate change mitigation and adaptation, Springer 2017.
[3] R. Notz, I. Toennies, N. McCann, G. Scheffknecht, H. Hasse, CO2 Capture for Fossil Fuel‐Fired Power Plants, Chemical Engineering & Technology 34(2) (2011) 163-172.
[4] V. Scott, S. Gilfillan, N. Markusson, H. Chalmers, R.S. Haszeldine, Last chance for carbon capture and storage, Nature Climate Change 3(2) (2013) 105-111.
[5] C. Hepburn, E. Adlen, J. Beddington, E.A. Carter, S. Fuss, N. Mac Dowell, J.C. Minx, P. Smith, C.K. Williams, The technological and economic prospects for CO2 utilization and removal, Nature 575(7781) (2019) 87-97.
[6] W. Wang, S. Wang, X. Ma, J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chemical Society Reviews 40(7) (2011) 3703-3727.
[7] E. Alper, O.Y. Orhan, CO2 utilization: Developments in conversion processes, Petroleum 3(1) (2017) 109-126.
[8] S.-S. Nam, H. Kim, G. Kishan, M.-J. Choi, K.-W. Lee, Catalytic conversion of carbon dioxide into hydrocarbons over iron supported on alkali ion-exchanged Y-zeolite catalysts, Applied Catalysis A: General 179(1-2) (1999) 155-163.
[9] T. Inui, K. Kitagawa, T. Takeguchi, T. Hagiwara, Y. Makino, Hydrogenation of carbon dioxide to C1-C7 hydrocarbons via methanol on composite catalysts, Applied Catalysis A: General 94(1) (1993) 31-44.
[10] R.W. Dorner, D.R. Hardy, F.W. Williams, H.D. Willauer, Heterogeneous catalytic CO2 conversion to value-added hydrocarbons, Energy & Environmental Science 3(7) (2010) 884-890.
[11] C.-S. Chen, W.-H. Cheng, S.-S. Lin, Mechanism of CO formation in reverse water–gas shift reaction over Cu/Al2O3 catalyst, Catalysis Letters 68(1) (2000) 45-48.
[12] W.-J. Shen, Y. Ichihashi, Y. Matsumura, Low temperature methanol synthesis from carbon monoxide and hydrogen over ceria supported copper catalyst, Applied Catalysis A: General 282(1-2) (2005) 221-226.
[13] P.M. Maitlis, A. de Klerk, Greener Fischer-tropsch processes: for fuels and feedstocks, John Wiley & Sons 2013.
[14] G. Centi, E.A. Quadrelli, S. Perathoner, Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy & Environmental Science 6(6) (2013) 1711-1731.
[15] J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, Y. Sun, A short review of catalysis for CO2 conversion, Catalysis Today 148(3-4) (2009) 221-231.
[16] J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol, Chemical Society Reviews 49(5) (2020) 1385-1413.
[17] S. Kuld, M. Thorhauge, H. Falsig, C.F. Elkjær, S. Helveg, I. Chorkendorff, J. Sehested, Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis, Science 352(6288) (2016) 969-974.
[18] X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis, Chemical Reviews 120(15) (2020) 7984-8034.
[19] L. Zhang, Y. Zhang, S. Chen, Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation, Applied Catalysis A: General 415 (2012) 118-123.
[20] V.D. Dasireddy, S.Š. Neja, L. Blaž, Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst activity and selectivity in CO2 hydrogenation to methanol, Journal of CO2 Utilization 28 (2018) 189-199.
[21] Y.-A. Hsueh, Y.C. Chuah, C.-H. Lin, D.-H. Tsai, Aerosol-Assisted Synthesis of Metal–Organic Framework-Derived Hybrid Nanomaterials for Reverse Water–Gas Shift Reaction, ACS Applied Nano Materials (2022).
[22] S.S. Kim, H.H. Lee, S.C. Hong, A study on the effect of support's reducibility on the reverse water-gas shift reaction over Pt catalysts, Applied Catalysis A: General 423 (2012) 100-107.
[23] M.D. Porosoff, X. Yang, J.A. Boscoboinik, J.G. Chen, Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO, Angewandte Chemie International Edition 53(26) (2014) 6705-6709.
[24] K.K. Bando, K. Soga, K. Kunimori, H. Arakawa, Effect of Li additive on CO2 hydrogenation reactivity of zeolite supported Rh catalysts, Applied Catalysis A: General 175(1-2) (1998) 67-81.
[25] B. Dai, G. Zhou, S. Ge, H. Xie, Z. Jiao, G. Zhang, K. Xiong, CO2 reverse water‐gas shift reaction on mesoporous M‐CeO2 catalysts, The Canadian Journal of Chemical Engineering 95(4) (2017) 634-642.
[26] S.-I. Fujita, M. Usui, N. Takezawa, Mechanism of the reverse water gas shift reaction over Cu/ZnO catalyst, Journal of Catalysis 134(1) (1992) 220-225.
[27] G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catalysis Today 148(3-4) (2009) 191-205.
[28] D.L. Jurković, A. Pohar, V.D. Dasireddy, B. Likozar, Effect of copper‐based catalyst support on reverse water‐gas shift reaction (RWGS) activity for CO2 reduction, Chemical Engineering & Technology 40(5) (2017) 973-980.
[29] Y. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, S.i. Matsumoto, Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction, Journal of Catalysis 242(1) (2006) 103-109.
[30] T.T. Nguyen Hoang, Y.-S. Lin, T.N.H. Le, T.K. Le, T.K.X. Huynh, D.-H. Tsai, Cu-ZnO@Al2O3 hybrid nanoparticle with enhanced activity for catalytic CO2 conversion to methanol, Advanced Powder Technology 32(5) (2021) 1785-1792.
[31] Y. Zhang, Y. Wang, X. Zhang, L. Wu, H. Wang, X. Wei, W.D. Wu, X. Wang, W. Li, Z. Wu, Microdroplet confined assembly enabling the scalable synthesis of titania supported ultrasmall low-valent copper catalysts for efficient photocatalytic activation of peroxymonosulfate, Nanoscale 13(32) (2021) 13764-13775.
[32] S. Asthana, K. Tripathi, K.K. Pant, Impact of La engineered stable phase mixed precursors on physico-chemical features of Cu-based catalysts for conversion of CO2 rich syngas to methanol, Catalysis Today (2022).
[33] F. Chen, P. Zhang, Y. Zeng, R. Kosol, L. Xiao, X. Feng, J. Li, G. Liu, J. Wu, G. Yang, Vapor-phase low-temperature methanol synthesis from CO2-containing syngas via self-catalysis of methanol and Cu/ZnO catalysts prepared by solid-state method, Applied Catalysis B: Environmental 279 (2020) 119382.
[34] C. Si, H. Ban, K. Chen, X. Wang, R. Cao, Q. Yi, Z. Qin, L. Shi, Z. Li, W. Cai, Insight into the positive effect of Cu0/Cu+ ratio on the stability of Cu-ZnO-CeO2 catalyst for syngas hydrogenation, Applied Catalysis A: General 594 (2020) 117466.
[35] A.O. Elnabawy, R. Schimmenti, A. Cao, J.K. Nørskov, Why ZnO is the Support for Cu in Methanol Synthesis? A Systematic Study of the Strong Metal Support Interactions, ACS Sustainable Chemistry & Engineering 10(4) (2022) 1722-1730.
[36] Z. Cheng, W. Zhou, G. Lan, X. Sun, X. Wang, C. Jiang, Y. Li, High-performance Cu/ZnO/Al2O3 catalysts for methanol steam reforming with enhanced Cu-ZnO synergy effect via magnesium assisted strategy, Journal of Energy Chemistry 63 (2021) 550-557.
[37] P. Gao, F. Li, H. Zhan, N. Zhao, F. Xiao, W. Wei, L. Zhong, Y. Sun, Fluorine-modified Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol, Catalysis Communications 50 (2014) 78-82.
[38] S.S.-Y. Chui, S.M.-F. Lo, J.P. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n, Science 283(5405) (1999) 1148-1150.
[39] Y.-C. Lai, C.-W. Kung, C.-H. Su, K.-C. Ho, Y.-C. Liao, D.-H. Tsai, Metal–Organic Framework Colloids: Disassembly and Deaggregation, Langmuir 32(24) (2016) 6123-6129.
[40] H.-L. Wang, H. Yeh, Y.-C. Chen, Y.-C. Lai, C.-Y. Lin, K.-Y. Lu, R.-M. Ho, B.-H. Li, C.-H. Lin, D.-H. Tsai, Thermal stability of metal–organic frameworks and encapsulation of CuO nanocrystals for highly active catalysis, ACS Applied Materials & Interfaces 10(11) (2018) 9332-9341.
[41] H.-L. Wang, C.-Y. Hsu, K.C. Wu, Y.-F. Lin, D.-H. Tsai, Functional nanostructured materials: aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications, Advanced Powder Technology 31(1) (2020) 104-120.
[42] H. Konnerth, B.M. Matsagar, S.S. Chen, M.H. Prechtl, F.-K. Shieh, K.C.-W. Wu, Metal-organic framework (MOF)-derived catalysts for fine chemical production, Coordination Chemistry Reviews 416 (2020) 213319.
[43] T.-Y. Liang, D. Senthil Raja, K.C. Chin, C.-L. Huang, S.A.P. Sethupathi, L.K. Leong, D.-H. Tsai, S.-Y. Lu, Bimetallic Metal–Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming, ACS Applied Materials & Interfaces 12(13) (2020) 15183-15193.
[44] F. Zhang, C. Chen, W.-m. Xiao, L. Xu, N. Zhang, CuO/CeO2 catalysts with well-dispersed active sites prepared from Cu3(BTC)2 metal–organic framework precursor for preferential CO oxidation, Catalysis Communications 26 (2012) 25-29.
[45] J.M. Zamaro, N.C. Pérez, E.E. Miró, C. Casado, B. Seoane, C. Téllez, J. Coronas, HKUST-1 MOF: A matrix to synthesize CuO and CuO–CeO2 nanoparticle catalysts for CO oxidation, Chemical Engineering Journal 195 (2012) 180-187.
[46] M. Kubo, R. Moriyama, M. Shimada, Facile fabrication of HKUST-1 nanocomposites incorporating Fe3O4 and TiO2 nanoparticles by a spray-assisted synthetic process and their dye adsorption performances, Microporous and Mesoporous Materials 280 (2019) 227-235.
[47] B. Peng, C. Feng, S. Liu, R. Zhang, Synthesis of CuO catalyst derived from HKUST-1 temple for the low-temperature NH3-SCR process, Catalysis Today 314 (2018) 122-128.
[48] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Commercial metal–organic frameworks as heterogeneous catalysts, Chemical Communications 48(92) (2012) 11275-11288.
[49] M. Ronda-Lloret, S. Rico-Francés, A. Sepúlveda-Escribano, E.V. Ramos-Fernandez, CuOx/CeO2 catalyst derived from metal organic framework for reverse water-gas shift reaction, Applied Catalysis A: General 562 (2018) 28-36.
[50] G. Avgouropoulos, T. Ioannides, Effect of synthesis parameters on catalytic properties of CuO-CeO2, Applied Catalysis B: Environmental 67(1-2) (2006) 1-11.
[51] L. Chen, Y. Shen, J. Bai, C. Wang, Novel symmetrical coralloid Cu 3D superstructures: Solid-state synthesis from a Cu-carboxylate MOF and their in-situ thermal conversion, Journal of Solid State Chemistry 182(8) (2009) 2298-2306.
[52] H. Kaimeng, C. Siyuan, X. Changjiu, L. Chenhao, Z. Bin, G. Hongyi, P. Xinxin, L. Min, L. Yibin, W. Ge, HKUST-1 derived Cu@CuOx/carbon catalyst for base-free aerobic oxidative coupling of benzophenone imine: high catalytic efficiency and excellent regeneration performance, RSC Advances 10(59) (2020) 36111-36118.
[53] Z. Wang, D. Ananias, A. Carné‐Sánchez, C.D. Brites, I. Imaz, D. Maspoch, J. Rocha, L.D. Carlos, Lanthanide–Organic Framework Nanothermometers Prepared by Spray‐Drying, Advanced Functional Materials 25(19) (2015) 2824-2830.
[54] T. Stolar, A.e. Prašnikar, V. Martinez, B. Karadeniz, A. Bjelić, G. Mali, T. Friščić, B. Likozar, K. Užarević, Scalable mechanochemical amorphization of bimetallic Cu−Zn MOF-74 catalyst for selective CO2 reduction reaction to methanol, ACS Applied Materials & Interfaces 13(2) (2021) 3070-3077.
[55] Y. Yang, Y. Xu, H. Ding, D. Yang, E. Cheng, Y. Hao, H. Wang, Y. Hong, Y. Su, Y. Wang, Cu/ZnOx@UiO-66 synthesized from a double solvent method as an efficient catalyst for CO2 hydrogenation to methanol, Catalysis Science & Technology 11(13) (2021) 4367-4375.
[56] J. Yang, F. Zhang, H. Lu, X. Hong, H. Jiang, Y. Wu, Y. Li, Hollow Zn/Co ZIF particles derived from core–shell ZIF‐67@ZIF‐8 as selective catalyst for the semi‐hydrogenation of acetylene, Angewandte Chemie 127(37) (2015) 11039-11043.
[57] A.K. Peterson, D.G. Morgan, S.E. Skrabalak, Aerosol synthesis of porous particles using simple salts as a pore template, Langmuir 26(11) (2010) 8804-8809.
[58] H. Chang, H.D. Jang, Controlled synthesis of porous particles via aerosol processing and their applications, Advanced Powder Technology 25(1) (2014) 32-42.
[59] Y. Mitsuka, N. Ogiwara, M. Mukoyoshi, H. Kitagawa, T. Yamamoto, T. Toriyama, S. Matsumura, M. Haneda, S. Kawaguchi, Y. Kubota, Fabrication of Integrated Copper‐Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Spray‐Drying Method: Highly Enhanced CO2 Hydrogenation Activity for Methanol Synthesis, Angewandte Chemie International Edition 60(41) (2021) 22283-22288.
[60] J. Zhu, D. Ciolca, L. Liu, A. Parastaev, N. Kosinov, E.J. Hensen, Flame synthesis of Cu/ZnO–CeO2 catalysts: synergistic metal–support interactions promote CH3OH selectivity in CO2 hydrogenation, ACS Catalysis 11(8) (2021) 4880-4892.
[61] Y.-S. Lin, J.-Y. Tu, D.-H. Tsai, Steam-promoted Methane-CO2 reforming by NiPdCeOx@SiO2 nanoparticle clusters for syngas production, International Journal of Hydrogen Energy 46(49) (2021) 25103-25113.
[62] T.-Y. Liang, P.Y. Low, Y.-S. Lin, D.-H. Tsai, Spherical porous nanoclusters of NiO and CeO2 nanoparticles as catalysts for syngas production, ACS Applied Nano Materials 3(9) (2020) 9035-9045.
[63] M. Rubio-Martinez, C. Avci-Camur, A.W. Thornton, I. Imaz, D. Maspoch, M.R. Hill, New synthetic routes towards MOF production at scale, Chemical Society Reviews 46(11) (2017) 3453-3480.
[64] A. Le Valant, C. Comminges, C. Tisseraud, C. Canaff, L. Pinard, Y. Pouilloux, The Cu–ZnO synergy in methanol synthesis from CO2, Part 1: Origin of active site explained by experimental studies and a sphere contact quantification model on Cu+ZnO mechanical mixtures, Journal of Catalysis 324 (2015) 41-49.
[65] C. Tisseraud, C. Comminges, T. Belin, H. Ahouari, A. Soualah, Y. Pouilloux, A. Le Valant, The Cu–ZnO synergy in methanol synthesis from CO2, Part 2: Origin of the methanol and CO selectivities explained by experimental studies and a sphere contact quantification model in randomly packed binary mixtures on Cu–ZnO coprecipitate catalysts, Journal of Catalysis 330 (2015) 533-544.
[66] S. Kuld, C. Conradsen, P.G. Moses, I. Chorkendorff, J. Sehested, Quantification of zinc atoms in a surface alloy on copper in an industrial‐type methanol synthesis catalyst, Angewandte Chemie 126(23) (2014) 6051-6055.
[67] T. Lunkenbein, J. Schumann, M. Behrens, R. Schlögl, M.G. Willinger, Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal–support interactions, Angewandte Chemie 127(15) (2015) 4627-4631.
[68] P.-F. Hsieh, Z.X. Law, C.-H. Lin, D.-H. Tsai, Understanding Solvothermal Growth of Metal–Organic Framework Colloids for CO2 Capture Applications, Langmuir 38(14) (2022) 4415-4424.
[69] P. Arul, S.A. John, Size controlled synthesis of Ni-MOF using polyvinylpyrrolidone: new electrode material for the trace level determination of nitrobenzene, Journal of Electroanalytical Chemistry 829 (2018) 168-176.
[70] Y. Gu, Y.n. Wu, L. Li, W. Chen, F. Li, S. Kitagawa, Controllable modular growth of hierarchical MOF‐on‐MOF architectures, Angewandte Chemie 129(49) (2017) 15864-15868.
[71] A. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures, Nature Chemistry 5(3) (2013) 203-211.
[72] A.G. Marquez, P. Horcajada, D. Grosso, G. Ferey, C. Serre, C. Sanchez, C. Boissiere, Green scalable aerosol synthesis of porous metal–organic frameworks, Chemical Communications 49(37) (2013) 3848-3850.
[73] S.-C. Yang, S.H. Pang, T.P. Sulmonetti, W.-N. Su, J.-F. Lee, B.-J. Hwang, C.W. Jones, Synergy between ceria oxygen vacancies and Cu nanoparticles facilitates the catalytic conversion of CO2 to CO under mild conditions, ACS Catalysis 8(12) (2018) 12056-12066.
[74] B. Lu, Z. Zhang, X. Li, C. Luo, Y. Xu, L. Zhang, High-efficiency CuCe (rod) catalysts for CO2 hydrogenation with high Cu content, Fuel 276 (2020) 118135.
[75] X. Zhang, X. Zhu, L. Lin, S. Yao, M. Zhang, X. Liu, X. Wang, Y.-W. Li, C. Shi, D. Ma, Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction, ACS Catalysis 7(1) (2017) 912-918.
[76] Y. Zhuang, R. Currie, K.B. McAuley, D.S. Simakov, Highly-selective CO2 conversion via reverse water gas shift reaction over the 0.5 wt% Ru-promoted Cu/ZnO/Al2O3 catalyst, Applied Catalysis A: General 575 (2019) 74-86.
[77] Y. Chen, X. Mu, E. Lester, T. Wu, High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity, Progress in Natural Science: Materials International 28(5) (2018) 584-589.
[78] T.N. Ramesh, T.L. Madhu, Thermal decomposition studies of layered metal hydroxynitrates (metal: Cu, Zn, Cu/Co, and Zn/Co), International Journal of Inorganic Chemistry 2015 (2015).
[79] T.T. Nguyen Hoang, D.-H. Tsai, Low-Temperature Methanol Synthesis Via (CO2 + CO) Combined Hydrogenation Using Cu-ZnO@Al2O3 Hybrid Nanoparticle Cluster, Available at SSRN 4110397.
[80] C. Peinado, D. Liuzzi, A. Sanchís, L. Pascual, M.A. Peña, J. Boon, S. Rojas, In Situ Conditioning of CO2-Rich Syngas during the Synthesis of Methanol, Catalysts 11(5) (2021) 534.
[81] S. Ay, M. Ozdemir, M. Melikoglu, Effects of magnesium and chromium addition on stability, activity and structure of copper-based methanol synthesis catalysts, International Journal of Hydrogen Energy 46(24) (2021) 12857-12873.
[82] S. Tada, S. Satokawa, Effect of Ag loading on CO2-to-methanol hydrogenation over Ag/CuO/ZrO2, Catalysis Communications 113 (2018) 41-45.
[83] X. Han, M. Li, X. Chang, Z. Hao, J. Chen, Y. Pan, S. Kawi, X. Ma, Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol, Journal of Energy Chemistry 71 (2022) 277-287.
[84] H. Kobayashi, J.M. Taylor, Y. Mitsuka, N. Ogiwara, T. Yamamoto, T. Toriyama, S. Matsumura, H. Kitagawa, Charge transfer dependence on CO2 hydrogenation activity to methanol in Cu nanoparticles covered with metal–organic framework systems, Chemical Science 10(11) (2019) 3289-3294.
[85] J. Gao, K. Ye, M. He, W.-W. Xiong, W. Cao, Z.Y. Lee, Y. Wang, T. Wu, F. Huo, X. Liu, Tuning metal–carboxylate coordination in crystalline metal–organic frameworks through surfactant media, Journal of Solid State Chemistry 206 (2013) 27-31.
[86] J. Wei, Q. Yue, Z. Sun, Y. Deng, D. Zhao, Synthesis of Dual‐Mesoporous Silica Using Non‐Ionic Diblock Copolymer and Cationic Surfactant as Co‐Templates, Angewandte Chemie International Edition 51(25) (2012) 6149-6153.
[87] A. Pustovarenko, M.G. Goesten, S. Sachdeva, M. Shan, Z. Amghouz, Y. Belmabkhout, A. Dikhtiarenko, T. Rodenas, D. Keskin, I.K. Voets, Nanosheets of Nonlayered Aluminum Metal–Organic Frameworks through a Surfactant‐Assisted Method, Advanced Materials 30(26) (2018) 1707234.
[88] C.S. Lee, J.M. Lim, J.T. Park, J.H. Kim, Direct growth of highly organized, 2D ultra-thin nano-accordion Ni-MOF@NiS2@C core-shell for high performance energy storage device, Chemical Engineering Journal 406 (2021) 126810.
[89] J. Zhang, B. An, Y. Hong, Y. Meng, X. Hu, C. Wang, J. Lin, W. Lin, Y. Wang, Pyrolysis of metal–organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation, Materials Chemistry Frontiers 1(11) (2017) 2405-2409.
[90] L. Pastor-Pérez, F. Baibars, E. Le Sache, H. Arellano-García, S. Gu, T.R. Reina, CO2 valorisation via reverse water-gas shift reaction using advanced Cs doped Fe-Cu/Al2O3 catalysts, Journal of CO2 Utilization 21 (2017) 423-428.
[91] M. Ginés, A. Marchi, C. Apesteguía, Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts, Applied Catalysis A: General 154(1-2) (1997) 155-171.
[92] G. Zhou, B. Dai, H. Xie, G. Zhang, K. Xiong, X. Zheng, CeCu composite catalyst for CO synthesis by reverse water–gas shift reaction: Effect of Ce/Cu mole ratio, Journal of CO2 Utilization 21 (2017) 292-301.