研究生: |
王彥婷 |
---|---|
論文名稱: |
死亡率債券評價-以Swiss Re mortality bond 為例 Mortality bond valuation:Using the Swiss Re mortality bond as an example |
指導教授: | 蔡子晧 |
口試委員: |
蔡子晧
楊曉文 索樂晴 |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 計量財務金融學系 Department of Quantitative Finance |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 36 |
中文關鍵詞: | 死亡率風險 、死亡率債券 、死亡率跳躍 |
外文關鍵詞: | Mortality Risk, Mortality Bonds, Mortality Jumps, Wang Transform |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來的金融商品創新之中,純粹連結死亡率風險的證券倍受矚目,不僅成為壽險業更有效率的風險管理工具,也提供投資大眾一個新的投資標的。2011年3月11日日本東北大地震也讓許多國家政府開始評估巨災死亡率債券發行的可能性。此時如何準確地捕捉及評價死亡率風險變成一個相當重要的課題。本研究將以2003年底Swiss Re mortality bond 為例探討死亡率模型化與死亡率債券的定價。利用不完全市場(Incomplete market)的定價方法-Wang transform,結合兩個考慮跳躍的死亡率預測模型,分別為2008 年Lin 和Cox 提出的兩狀態結構轉換對數常態模型(Two-state regime-switching lognormal model)及2009 年Chen和Cox 的模型,估算2003年底發行的三年期Swiss Re mortality bond 隱含的風險市場價格。最後在以Swiss Re 於2005年4月發行的債券為例說明如何將估算的風險市場價格應用到不同契約條件的風險溢酬計算。
Recently, securitization of mortality risk or longevity risk draws a plenty of attention in the financial market. Pure mortality or longevity securities not only provide an alternative risk management method for life insurers, but also offer a novel investment opportunity for investors. The Japan Tohoku earthquake of 11th March, 2011, has caused some countries to consider and evaluate the possibility of issuance of catastrophic mortality bonds. Thus, how to precisely capture and price mortality risks becomes a very important issue. Our study will take the Swiss Re mortality bond of 2003 as an example to discuss mortality rates modeling and mortality bond price. We adopt two mortality stochastic models that takes into account a jump process
together with the incomplete market pricing theory-Wang transform to calculate the implied market price of risk. The last, we show how to apply the estimated market price of risk to calculate the par spread of Swiss Re mortality bond of 2005.
1. Cowley, A., and Cummins, J. D. (2005). Securitization of Life Insurance Assets And Liabilities. Journal of Risk and Insurance, 72(2). 193-226.
2. Cairns, A. J. G., Blake, D., Dowd, K., and MacMinn, R.(2006). Longevity Bonds: Financial Engineering, Valuation, and Hedging. Journal of Risk and Insurance, 73 (4),
647–672.
3. Cairns, A. J. G., Blake, D., and Dowd, K. (2006). Living with Mortality: Longevity Bonds and Other Mortality-Linked Securities. The Faculty of Actuaries.
4. Cairns, A. J. G., Blake, D., and Dowd, K. (2006b). A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration. Journal of Risk and
Insurance, 73(4), 687-718.
5. Chen, H., and Cox, S. H. (2009). Modeling Mortality With Jumps: Applications to Mortality Securitization. Journal of Risk and Insurance, 76(3), 727-751.
6. Chen, H., and Cummins, J. D. (2010). Longevity bond premiums: The extreme value approach and risk cubic pricing. Insurance: Mathematics and Economics, 150-161.
7. Cox, S. H., and Lin, Y. (2005). Securitization of Mortality Risks in Life Annuities. Journal of Risk and Insurance, 72(2), 227-252.
8. Cox, S. H., and Lin, Y. (2008). Securitization of Catastrophe Mortality Risks. Insurance: Mathematics and Economics, 42(2), 628-637.
9. Cox, S. H., Lin, Y., and Pedersen, H. (2010). Mortality risk modeling: Applications to insurance securitization. Insurance: Mathematics and Economics, 242-253.
10. Cummins, J. D., and Trainar, P. (2009). Securitization, Insurance, and Reinsurance. Journal of Risk and Insurance, 76(3), 463-492.
11. Milidonis, A., Lin, Y., and Cox, S. H. (2010). Mortality regimes and pricing. Working Paper.
12. Wang, S. S. (2001). A universal framework for pricing financial and insurance risks. In: XI-th AFIR Proceedings. 2001, September 6–7, Toronto. AFIR,pp. 679-703.
13. Wang, S.S. (2002). A universal framework for pricing financial and insurance risks. ASTIN Bulletin 32 (2), 213-234.
14. Wang, S.S. (2004). Cat bond pricing using probability transforms (Insurance and the State of the Art in Cat Bond Pricing). The Geneva Papers on Risk and Insurance — Issues and Practice 19-29 (special issue).