簡易檢索 / 詳目顯示

研究生: 簡芷薇
論文名稱: 開發醣基化及磷酸化修飾膜蛋白體之 同步定量分析策略
Development of Quantitative Strategy for Simultaneous Analysis of N-glycosylated and Phosphorylated Membrane Proteome
指導教授: 林俊成
陳玉如
口試委員: 林俊成
陳玉如
邱繼輝
林俊宏
陳貴通
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 109
中文關鍵詞: 膜蛋白質體學醣基化磷酸化質譜分析
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞膜蛋白質的活性主要受其轉譯後修飾所調控,如位於細胞膜外區域之醣基化修飾扮演著訊息接收的功能,而細胞膜內區域之磷酸化修飾則開啟下游的訊息傳遞路徑。然而,醣基化與磷酸化修飾的膜蛋白體在性質上因具有高疏水性、低化學劑量及質譜分析中較不易游離化而導致的離子抑制效應,和其同時具有相異的修飾型態使得其在蛋白體分析上仍然是一個相當大的挑戰。因此,本研究目的為開發一新穎分析策略,以去醣基化為基礎的圖譜標的法並結合固化金屬親和層析法(IMAC)與同位素標記相對與絕對定量(iTRAQ Labeling)之策略,以期能同時定量分析細胞膜上之醣基化蛋白質體與磷酸化蛋白質體及其修飾位置。
    本研究藉由去醣基化胜肽(deglycopeptide)其游離效率較強而易出現於質譜圖中,來幫助鑑定醣基化胜肽(glycopeptide)。此概念首先利用HeLa細胞株來證明其可行性。圖譜依據兩項準則進行篩選:1) 皆具有共同序列(consensus sequence) Asn-Xxx-Ser/Thr而造成胜肽分子量1Da的位移;2) 胜肽去醣基化後,所得訊號強度比例達二倍的增加。值得注意的是,去醣基化後的膜蛋白樣品與原本樣品相比,其胜肽產量約有1.25倍的增加。再者,此分析方法最重要的優勢在於能同時鑑定和定量醣基化胜肽/磷酸化胜肽修飾及他們相對應的蛋白質在不同生物狀態下的表現量。因此,我們進一步將此分析分法結合了固化金屬親和層析法並應用在分析受到細胞白介素第二、五因子(interleukin 2/5)刺激之後的B細胞(BCL-1)其膜蛋白之醣基化與磷酸化修飾的改變。此外,在利用酵素(N-Glycosidase F, PNGase F) 進行去醣基化反應中同時加入了同位素18O標記於胺基酸Asn上,使得醣基化胜肽的鑑定更加可信。而在定量分析上,表現量上差異的醣基化蛋白質與磷酸化蛋白質顯示了許多蛋白質的醣基化與磷酸化參與了B淋巴癌細胞株中的免疫反應及細胞存活等訊息路徑。本研究期望能針對醣基化及磷酸化修飾之膜蛋白體的同步定量分析提供一個新穎的分析策略。
    第二部分,本研究利用凝集素表面修飾上硼酸官能基所開發新混合型材料,BAD-lectin,應用於細胞層次的醣蛋白體分析。研究中使用了三種BAD-Lectin@MNPs,,其在醣基化胜肽純化上顯示了良好的專一性。再者,利用不同的質譜儀分析方法,三種BAD-Lectin@MNPs所純化出來之醣基化胜肽皆俱有其不同凝集素之相對應的特性醣鏈分子。我們期望此一新型材料結合質譜分析法能提供為偵測醣分子探針之工具,以利更深入的醣蛋白體分析。


    The activity of membrane proteins are critically controlled by post-translational modification (PTM), such as glycosylation in the extracellular domain that functions as signal receiver, while the phosphorylation occurring at the intracellular domain initiates the signaling transduction pathway. However, it is still a great challenge to analyze them due to the bottlenecks of highly hydrophobic nature of membrane proteins, low stoichiometry on modification, heterogeneous PTM pattern and ion suppression effect from unmodified peptides of high abundance. To facilitate concomitant analysis of membrane proteome and their PTM sites, we proposed a quantitation platform by integration of deglycosylation-based spectra enrichment, IMAC enrichment and iTRAQ labeling strategies. The performance of spectra enrichment was first demonstrated the glycopeptides can be identified based on two criteria: 1) consensus sequence Asn-Xxx-Ser/Thr with mass shift of 1 Da; 2) iTRAQ ratio with 2-fold enhancement. Further incorporation of 18O-labelig in the sequential digestion steps, the iTRAQ-based signal enhancement with 18O-labeled deglycosylation achieved 100% confidence for accessing glycosylation site occupancies. This strategy also offers advantage to discriminate alterations at either the protein expression level or the modification extent on glycosylation and phosphorylation under different biological states. We integrated this strategy with IMAC purification for quantitative analysis on the B cell lymphoma in response to cytokine stimulation. The differential expression of glycosylation sites and phosphorylation sites revealed that many proteins involved in the immune response and receptor signaling pathway from B cell lymphoma in response to IL-2/IL5 stimulation. We expected that this spectra enrichment strategy may provide a new method for concomitant analysis of N-glycosylated and phosphorylated membrane proteome.
    Next, a new type of hybrid biomaterial, namely a boronicacid-decoratedlectin (BAD-lectin), for efficient bifunctional glycoprotein labeling and enrichment was developed and applied on the level of whole cell lysates for glycoproteomic analysis. Three different types of BAD-lectin@MNPs exhibited excellent specificities for glycopeptide enrichment. Furthermore, the precursor ion discovery (PID) mode from Q-TOF-MS was used to filter glycopeptide spectra, the enrichment selectivity was observed that each BAD-ConA@MNP, BAD-AAL@MNP and BAD-SNA@MNP contain the majority of characteristic fragments of their corresponding recognition glycan. With the demonstrated enrichment selectivity and enhanced extraction efficiency, the reported BA-Lectin@MNP-based mass spectrometric method provides a glycan-targeting tool to facilitate the in-depth analysis of glycoproteome.

    Table of Contents 指導教授推薦書 考試委員審訂書 中文摘要………………………………………………………………………………i ABSTRACT…………………………...…………………………………………...…iii ABREVIATIONS………………………………...………………...…………….…....v TABLE OF CONTENTS…………………………..……………………………...…vii CHAPTER 1 INTRODUCTION 1.1 Significance of membrane proteins…………….…………………………….……1 1.2 Post-translational modification on membrane proteins……………………………2 1.2.1 Protein glycosylation…………………….…………………………………..2 1.2.2 Protein phosphorylation…………...……….………………………………..3 1.2.3 Cross-talk between N-linked glycosylation and phosphorylation……...……4 1.3 Methodologies for MS-based glycol- and phosphoproteomic analysis…………...5 1.3.1 Enrichment of glycoproteome………………………………….……………6 1.3.2 Mapping of N-linked glycosylation sites………...………………………….7 1.3.3 Quantitative analysis for glyco- and phosphoproteomics……………….…..8 1.4 Simultaneous characterization of glycoproteome and phosphoproteome….….....10 1.5 Thesis objectives…………………………………………………………..….….11 CHAPTER 2 MATERIALS AND METHODS………..………………………….13 2.1 Chemicals and materials………………………………………………………….13 2.2 Cell culture and stimulation………………………………...……………………14 2.3 Membrane protein purification……………………………………………….…..14 2.4 Gel-assisted digestion of membrane protein…………………………..…………15 2.5 Phosphopeptide enrichment by pH/Acid-controlled Immobilized Metal Affinity Chromatography (IMAC)……….……………...………………………………...16 2.6 Quantitative N-glycoproteomic and membrane proteomic analysis………...…...17 2.6.1 Sequential digestion with PNGase F and trypsin………….……………….17 2.6.2 Isobaric tagsfor relative and absolute quantitation (iTRAQ) labeling..........17 2.6.3 Peptide fractionation by strong cation exchange chromatography (SCX)……..18 2.7 Glycopeptideenrichment by BAD-lectin@MNPs..................................................18 2.8 LC-MS/MS analysis………………………………………………...……………19 2.8.1 Phosphopeptide by Orbitrap XL..………………………………………….19 2.8.2 Membrane and de-N-glycopeptide by Q-TOF Premier and OrbitrapXL.....20 2.8.3 BAD-lectin enriched glycopeptide by SynaptG2….....……….…………...21 2.9 Data processing and protein identification……………………………………….22 2.10 Quantitation Software………………………………..…………………………22 2.10.1 Label-free quantitation by IDEAL-Q…………………………….…..….22 2.10.2 iTRAQ quantitation by Multi-Q……………………………….……..….23 2.11 Protein annotation and topological analysis…………………………………….24 CHAPTER 3 RESULTS 3.1 Methodology development for quantitative Glyco/Phopspho-Membrane proteome platform………………………………………………………………...………...26 3.1.1 Performance of enzymatic de-N-glycosylation on proteomic analysis…….27 3.1.2 Connection of phosphoprotemic and glycoproteomic analysis………….....29 3.2 Simultaneously quantitative analysis of N-glycosylated and phosphorylated membrane proteome………………………...……………………………..……..30 3.2.1 Rationale for correct quantitation of glycosylation and phosphorylation expressions……………………………………………………….….…….30 3.2.2 Detection of glycosylation site occupancy by 18O-labeled deglycosylation and iTRAQ-based spectra enhancement method………...………………..31 3.2.3 Case study: B cell activation upon IL-2 and IL-5 treatment…………….…32 3.2.3.1 Comprehensive identification of N-glycosylated and phosphorylated membrane proteome……………………………………….………32 3.2.3.2 Expression changes between glycosylation and phosphorylation …………………….…………….…………………………………34 3.3 BAD-lectin conjugated magnetic nanoparticle for selective enrichment and glycoproteomic analysis……………………………………………………….…36 3.3.1 Methodology for BAD-lectin@MNP-based glycopeptide identification….37 3.3.1.1 Experimental design……………………………………………….37 3.3.1.2 Optimization of glycopeptide enrichment from cells………….…..38 3.3.2 Complementary glycoproteomic analysis in Hela cells……………………39 CHAPTER 4 DISCUSSION…………………………….………………………….42 CHAPTER 5 CONCLUSIONS AND FUTURE PERSPECTIVES………...……49 REFERANCES……….………….…………………………………………..………51 FIGURES…………………………..………………………………………………...60 TABLES……………….……………………………………………………………..87 APPENDIXES………..…………………………………………………………….108

    REFERCNES

    1. Cho, W. & Stahelin, R. V. (2005). Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34, 119-51.
    2. Hunziker, W. & Geuze, H. J. (1996). Intracellular trafficking of lysosomal membrane proteins. Bioessays 18, 379-89.
    3. O'Hagan, D. T. & Valiante, N. M. (2003). Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2, 727-35.
    4. Aloy, P. & Russell, R. B. (2005). Structure-based systems biology: a zoom lens for the cell. FEBS Lett 579, 1854-8.
    5. Wu, C. C. & Yates, J. R., 3rd. (2003). The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21, 262-7.
    6. de Souza, G. A., Arntzen, M. O., Fortuin, S., Schurch, A. C., Malen, H., McEvoy, C. R., van Soolingen, D., Thiede, B., Warren, R. M. & Wiker, H. G. (2011). Proteogenomic analysis of polymorphisms and gene annotation divergences in prokaryotes using a clustered mass spectrometry-friendly database. Mol Cell Proteomics 10, M110 002527.
    7. Yildirim, M. A., Goh, K. I., Cusick, M. E., Barabasi, A. L. & Vidal, M. (2007). Drug-target network. Nat Biotechnol 25, 1119-26.
    8. Roth, J. (2002). Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 102, 285-303.
    9. Cohen, P. (2000). The regulation of protein function by multisite phosphorylation--a 25 year update. Trends Biochem Sci 25, 596-601.
    10. Dennis, J. W., Granovsky, M. & Warren, C. E. (1999). Protein glycosylation in development and disease. Bioessays 21, 412-21.
    11. Nilsson, B. (1994). Analysis of protein glycosylation by mass spectrometry. Mol Biotechnol 2, 243-80.
    12. Harvey, D. J. (2005). Proteomic analysis of glycosylation: structural determination of N- and O-linked glycans by mass spectrometry. Expert Rev Proteomics 2, 87-101.
    13. Ubersax, J. A. & Ferrell, J. E., Jr. (2007). Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8, 530-41.
    14. Ohtsubo, K. & Marth, J. D. (2006). Glycosylation in cellular mechanisms of health and disease. Cell 126, 855-67.
    15. Cohen, P. (2001). The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem 268, 5001-10.
    16. Kobata, A. & Amano, J. (2005). Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol 83, 429-39.
    17. Hunter, T. (2009). Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21, 140-6.
    18. Campbell, B. J., Yu, L. G. & Rhodes, J. M. (2001). Altered glycosylation in inflammatory bowel disease: a possible role in cancer development. Glycoconj J 18, 851-8.
    19. Gornik, O. & Lauc, G. (2008). Glycosylation of serum proteins in inflammatory diseases. Dis Markers 25, 267-78.
    20. Mi, K. & Johnson, G. V. (2006). The role of tau phosphorylation in the pathogenesis of Alzheimer's disease. Curr Alzheimer Res 3, 449-63.
    21. Muntane, G., Dalfo, E., Martinez, A. & Ferrer, I. (2008). Phosphorylation of tau and alpha-synuclein in synaptic-enriched fractions of the frontal cortex in Alzheimer's disease, and in Parkinson's disease and related alpha-synucleinopathies. Neuroscience 152, 913-23.
    22. Liu, Y. C., Yen, H. Y., Chen, C. Y., Chen, C. H., Cheng, P. F., Juan, Y. H., Khoo, K. H., Yu, C. J., Yang, P. C., Hsu, T. L. & Wong, C. H. (2011). Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci U S A 108, 11332-7.
    23. Contessa, J. N., Bhojani, M. S., Freeze, H. H., Rehemtulla, A. & Lawrence, T. S. (2008). Inhibition of N-linked glycosylation disrupts receptor tyrosine kinase signaling in tumor cells. Cancer Res 68, 3803-9.
    24. Pan, S., Chen, R., Aebersold, R. & Brentnall, T. A. (2011). Mass spectrometry based glycoproteomics--from a proteomics perspective. Mol Cell Proteomics 10, R110 003251.
    25. Choudhary, C. & Mann, M. (2010). Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11, 427-39.
    26. Pan, C., Olsen, J. V., Daub, H. & Mann, M. (2009). Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808.
    27. Olsen, J. V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M. L., Jensen, L. J., Gnad, F., Cox, J., Jensen, T. S., Nigg, E. A., Brunak, S. & Mann, M. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3.
    28. Wisniewski, J. R., Nagaraj, N., Zougman, A., Gnad, F. & Mann, M. (2010). Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9.
    29. Kitano, S., Moriyama, M. & Sugimachi, K. (1992). Laparoscopy-assisted abdominal surgery for common bile duct stones. Endoscopy 24, 804.
    30. Tsai, C. F., Wang, Y. T., Chen, Y. R., Lai, C. Y., Lin, P. Y., Pan, K. T., Chen, J. Y., Khoo, K. H. & Chen, Y. J. (2008). Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7, 4058-69.
    31. Wang, Y. T., Tsai, C. F., Hong, T. C., Tsou, C. C., Lin, P. Y., Pan, S. H., Hong, T. M., Yang, P. C., Sung, T. Y., Hsu, W. L. & Chen, Y. J. (2010). An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-97.
    32. Lis, H. & Sharon, N. (1986). Lectins as molecules and as tools. Annu Rev Biochem 55, 35-67.
    33. Foth, B. J., Zhang, N., Chaal, B. K., Sze, S. K., Preiser, P. R. & Bozdech, Z. (2011). Quantitative time-course profiling of parasite and host cell proteins in the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 10, M110 006411.
    34. Snapinn, S. & Jiang, Q. (2011). Analysis of multiple endpoints in clinical trials: it's time for the designations of primary, secondary and tertiary to go. Pharm Stat 10, 1-2.
    35. Kaji, H., Saito, H., Yamauchi, Y., Shinkawa, T., Taoka, M., Hirabayashi, J., Kasai, K., Takahashi, N. & Isobe, T. (2003). Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 21, 667-72.
    36. Qiu, R. & Regnier, F. E. (2005). Comparative glycoproteomics of N-linked complex-type glycoforms containing sialic acid in human serum. Anal Chem 77, 7225-31.
    37. Larsen, M. R., Jensen, S. S., Jakobsen, L. A. & Heegaard, N. H. (2007). Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics 6, 1778-87.
    38. Palmisano, G., Lendal, S. E., Engholm-Keller, K., Leth-Larsen, R., Parker, B. L. & Larsen, M. R. (2010). Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry. Nat Protoc 5, 1974-82.
    39. Zhang, H., Li, X. J., Martin, D. B. & Aebersold, R. (2003). Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21, 660-6.
    40. Sparbier, K., Wenzel, T. & Kostrzewa, M. (2006). Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. J Chromatogr B Analyt Technol Biomed Life Sci 840, 29-36.
    41. Spannuth, W. A., Mangala, L. S., Stone, R. L., Carroll, A. R., Nishimura, M., Shahzad, M. M., Lee, S. J., Moreno-Smith, M., Nick, A. M., Liu, R., Jennings, N. B., Lin, Y. G., Merritt, W. M., Coleman, R. L., Vivas-Mejia, P. E., Zhou, Y., Krasnoperov, V., Lopez-Berestein, G., Gill, P. S. & Sood, A. K. (2010). Converging evidence for efficacy from parallel EphB4-targeted approaches in ovarian carcinoma. Mol Cancer Ther 9, 2377-88.
    42. Kuster, B. & Mann, M. (1999). 18O-labeling of N-glycosylation sites to improve the identification of gel-separated glycoproteins using peptide mass mapping and database searching. Anal Chem 71, 1431-40.
    43. Palmisano, G., Melo-Braga, M. N., Engholm-Keller, K., Parker, B. L. & Larsen, M. R. (2012). Chemical deamidation: a common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses. J Proteome Res 11, 1949-57.
    44. Trinidad, J. C., Thalhammer, A., Specht, C. G., Lynn, A. J., Baker, P. R., Schoepfer, R. & Burlingame, A. L. (2008). Quantitative analysis of synaptic phosphorylation and protein expression. Mol Cell Proteomics 7, 684-96.
    45. Wu, R., Dephoure, N., Haas, W., Huttlin, E. L., Zhai, B., Sowa, M. E. & Gygi, S. P. (2011). Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes. Mol Cell Proteomics 10, M111 009654.
    46. Liu, Z., Cao, J., He, Y., Qiao, L., Xu, C., Lu, H. & Yang, P. (2010). Tandem 18O stable isotope labeling for quantification of N-glycoproteome. J Proteome Res 9, 227-36.
    47. Ueda, K., Takami, S., Saichi, N., Daigo, Y., Ishikawa, N., Kohno, N., Katsumata, M., Yamane, A., Ota, M., Sato, T. A., Nakamura, Y. & Nakagawa, H. (2010). Development of serum glycoproteomic profiling technique; simultaneous identification of glycosylation sites and site-specific quantification of glycan structure changes. Mol Cell Proteomics 9, 1819-28.
    48. Sun, Z., Chen, R., Cheng, K., Liu, H., Qin, H., Ye, M. & Zou, H. (2012). A new method for quantitative analysis of cell surface glycoproteome. Proteomics 12, 3328-37.
    49. Zielinska, D. F., Gnad, F., Wisniewski, J. R. & Mann, M. (2010). Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141, 897-907.
    50. Moorjani, H., Craddock, B. P., Morrison, S. A. & Steigbigel, R. T. (1996). Impairment of phagosome-lysosome fusion in HIV-1-infected macrophages. J Acquir Immune Defic Syndr Hum Retrovirol 13, 18-22.
    51. Zhang, H., Guo, T., Li, X., Datta, A., Park, J. E., Yang, J., Lim, S. K., Tam, J. P. & Sze, S. K. (2010). Simultaneous characterization of glyco- and phosphoproteomes of mouse brain membrane proteome with electrostatic repulsion hydrophilic interaction chromatography. Mol Cell Proteomics 9, 635-47.
    52. Palmisano, G., Parker, B. L., Engholm-Keller, K., Lendal, S. E., Kulej, K., Schulz, M., Schwammle, V., Graham, M. E., Saxtorph, H., Cordwell, S. J. & Larsen, M. R. (2012). A novel method for the simultaneous enrichment, identification, and quantification of phosphopeptides and sialylated glycopeptides applied to a temporal profile of mouse brain development. Mol Cell Proteomics 11, 1191-202.
    53. Shibuya, N., Goldstein, I. J., Broekaert, W. F., Nsimba-Lubaki, M., Peeters, B. & Peumans, W. J. (1987). The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem 262, 1596-601.
    54. Han, C. L., Chien, C. W., Chen, W. C., Chen, Y. R., Wu, C. P., Li, H. & Chen, Y. J. (2008). A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol Cell Proteomics 7, 1983-97.
    55. Misra, A., Shasany, A. K., Shukla, A. K., Darokar, M. P., Singh, S. C., Sundaresan, V., Singh, J., Bagchi, G. D., Jain, S. P., Saikia, D. & Khanuja, S. P. (2010). AFLP markers for identification of Swertia species (Gentianaceae). Genet Mol Res 9, 1535-44.
    56. Olsen, J. V., de Godoy, L. M., Li, G., Macek, B., Mortensen, P., Pesch, R., Makarov, A., Lange, O., Horning, S. & Mann, M. (2005). Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4, 2010-21.
    57. Tsou, C. C., Tsai, C. F., Tsui, Y. H., Sudhir, P. R., Wang, Y. T., Chen, Y. J., Chen, J. Y., Sung, T. Y. & Hsu, W. L. (2010). IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation. Mol Cell Proteomics 9, 131-44.
    58. Lin, W. T., Hung, W. N., Yian, Y. H., Wu, K. P., Han, C. L., Chen, Y. R., Chen, Y. J., Sung, T. Y. & Hsu, W. L. (2006). Multi-Q: a fully automated tool for multiplexed protein quantitation. J Proteome Res 5, 2328-38.
    59. Turner, C. A., Jr., Mack, D. H. & Davis, M. M. (1994). Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297-306.
    60. Blake, T. A., Williams, T. L., Pirkle, J. L. & Barr, J. R. (2009). Targeted N-linked glycosylation analysis of H5N1 influenza hemagglutinin by selective sample preparation and liquid chromatography/tandem mass spectrometry. Anal Chem 81, 3109-18.
    61. Lin, S. Y., Chen, Y. Y., Fan, Y. Y., Lin, C. W., Chen, S. T., Wang, A. H. & Khoo, K. H. (2008). Precise mapping of increased sialylation pattern and the expression of acute phase proteins accompanying murine tumor progression in BALB/c mouse by integrated sera proteomics and glycomics. J Proteome Res 7, 3293-303.
    62. Huddleston, M. J., Bean, M. F. & Carr, S. A. (1993). Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem 65, 877-84.
    63. Tao, S. C., Li, Y., Zhou, J., Qian, J., Schnaar, R. L., Zhang, Y., Goldstein, I. J., Zhu, H. & Schneck, J. P. (2008). Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 18, 761-9.
    64. Arndt, N. X., Tiralongo, J., Madge, P. D., von Itzstein, M. & Day, C. J. (2011). Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines. J Cell Biochem 112, 2230-40.
    65. Hao, P., Guo, T. & Sze, S. K. (2011). Simultaneous analysis of proteome, phospho- and glycoproteome of rat kidney tissue with electrostatic repulsion hydrophilic interaction chromatography. PLoS One 6, e16884.
    66. Melo-Braga, M. N., Verano-Braga, T., Leon, I. R., Antonacci, D., Nogueira, F. C., Thelen, J. J., Larsen, M. R. & Palmisano, G. (2012). Modulation of protein phosphorylation, N-glycosylation and Lys-acetylation in grape (Vitis vinifera) mesocarp and exocarp owing to Lobesia botrana infection. Mol Cell Proteomics 11, 945-56.
    67. Hao, P., Ren, Y., Alpert, A. J. & Sze, S. K. (2011). Detection, evaluation and minimization of nonenzymatic deamidation in proteomic sample preparation. Mol Cell Proteomics 10, O111 009381.
    68. Parker, B. L., Palmisano, G., Edwards, A. V., White, M. Y., Engholm-Keller, K., Lee, A., Scott, N. E., Kolarich, D., Hambly, B. D., Packer, N. H., Larsen, M. R. & Cordwell, S. J. (2011). Quantitative N-linked glycoproteomics of myocardial ischemia and reperfusion injury reveals early remodeling in the extracellular environment. Mol Cell Proteomics 10, M110 006833.
    69. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A. & Pappin, D. J. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 1154-69.
    70. DeSouza, L. V., Taylor, A. M., Li, W., Minkoff, M. S., Romaschin, A. D., Colgan, T. J. & Siu, K. W. (2008). Multiple reaction monitoring of mTRAQ-labeled peptides enables absolute quantification of endogenous levels of a potential cancer marker in cancerous and normal endometrial tissues. J Proteome Res 7, 3525-34.
    71. Ow, S. Y., Salim, M., Noirel, J., Evans, C., Rehman, I. & Wright, P. C. (2009). iTRAQ underestimation in simple and complex mixtures: "the good, the bad and the ugly". J Proteome Res 8, 5347-55.
    72. Ahmed, N. N., Grimes, H. L., Bellacosa, A., Chan, T. O. & Tsichlis, P. N. (1997). Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc Natl Acad Sci U S A 94, 3627-32.
    73. Cipres, A., Gala, S., Martinez, A. C., Merida, I. & Williamson, P. (1999). An IL-2 receptor beta subdomain that controls Bcl-X(L) expression and cell survival. Eur J Immunol 29, 1158-67.
    74. Osinalde, N., Moss, H., Arrizabalaga, O., Omaetxebarria, M. J., Blagoev, B., Zubiaga, A. M., Fullaondo, A., Arizmendi, J. M. & Kratchmarova, I. (2011). Interleukin-2 signaling pathway analysis by quantitative phosphoproteomics. J Proteomics 75, 177-91.
    75. Takatsu, K., Takaki, S. & Hitoshi, Y. (1994). Interleukin-5 and its receptor system: implications in the immune system and inflammation. Adv Immunol 57, 145-90.
    76. Dickason, R. R. & Huston, D. P. (1996). Creation of a biologically active interleukin-5 monomer. Nature 379, 652-5.
    77. Sato, S., Katagiri, T., Takaki, S., Kikuchi, Y., Hitoshi, Y., Yonehara, S., Tsukada, S., Kitamura, D., Watanabe, T., Witte, O. & Takatsu, K. (1994). IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and activation of Bruton's tyrosine and Janus 2 kinases. J Exp Med 180, 2101-11.
    78. Lee, S. J., Jang, B. C., Lee, S. W., Yang, Y. I., Suh, S. I., Park, Y. M., Oh, S., Shin, J. G., Yao, S., Chen, L. & Choi, I. H. (2006). Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett 580, 755-62.
    79. Liu, J., Hamrouni, A., Wolowiec, D., Coiteux, V., Kuliczkowski, K., Hetuin, D., Saudemont, A. & Quesnel, B. (2007). Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110, 296-304.
    80. Storch, B., Meixlsperger, S. & Jumaa, H. (2007). The Ig-alpha ITAM is required for efficient differentiation but not proliferation of pre-B cells. Eur J Immunol 37, 252-60.
    81. Yamanashi, Y., Kakiuchi, T., Mizuguchi, J., Yamamoto, T. & Toyoshima, K. (1991). Association of B cell antigen receptor with protein tyrosine kinase Lyn. Science 251, 192-4.
    82. van Noesel, C. J., Lankester, A. C., van Schijndel, G. M. & van Lier, R. A. (1993). The CR2/CD19 complex on human B cells contains the src-family kinase Lyn. Int Immunol 5, 699-705.
    83. Fujimoto, M., Fujimoto, Y., Poe, J. C., Jansen, P. J., Lowell, C. A., DeFranco, A. L. & Tedder, T. F. (2000). CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. Immunity 13, 47-57.
    84. Flores-Borja, F., Kabouridis, P. S., Jury, E. C., Isenberg, D. A. & Mageed, R. A. (2005). Decreased Lyn expression and translocation to lipid raft signaling domains in B lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum 52, 3955-65.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE