研究生: |
孫于洸 Sun, Yu-Guang |
---|---|
論文名稱: |
透過壓電觸媒效應之單層與少數層二硫化鉬 奈米花製備高活性氫氧自由基溶液 Preparation of Highly Active Hydroxyl Radical Solution of Single and Few-Layers MoS2 Nanoflowers Through Piezo-Catalytic Effect |
指導教授: |
吳志明
Wu, Jyh-Ming |
口試委員: |
吳文蒂
Wu, Wen-Ti 曾永寬 Tseng, Yung-Kuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 二硫化鉬 、壓電觸媒 、吸附效應 、氫氧自由基 、F中心 、降解 |
外文關鍵詞: | MoS2 (Molybdenum disulfide), piezo-catalyst, adsorption effect, hydroxyl radical, F-center, degradation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在壓電觸媒材料的研究領域中,主要是使用粉末狀的壓電觸媒材料直接進行壓電降解實驗,過程中染劑顏色變化十分容易觀察,在本團隊先前所發表的研究之中,二硫化鉬的降解特性也已經達到了十分優秀的地步,然而在降解的過程中,因為二硫化鉬分子的高比表面積與染劑分子的直接接觸,很容易造成染料分子與材料的吸附效應,而吸附效應的存在一直是影響我們分析材料降解能力的重要瓶頸。因此本研究主要在開發全新的降解方式,將粉末二硫化鉬壓電觸媒材料加入去離子水,超音波震盪之後利用離心分離的方式將粉體與溶液分離,此步驟經過簡易化學量測證實可將99 %以上之粉體移除,留下漂浮的少數層及單層二硫化鉬在溶液中,我們發現此透明溶液具備高度的活性,將此活性溶液與染劑溶液混合之後,可觀察到顏色的變化,這代表著染劑分子濃度的降低以及此溶液具有降解特性,而根據初始加入的二硫化鉬粉末量多寡,可發現活性溶液的降解特性與粉末量呈現正相關的成長趨勢,在粉末量為250 mg時可達到80 %以上的降解效果,而因為已移除了99 %以上的粉末,吸附效應基本上已經不是重要的課題,也因此可以完全展現出壓電氫氧自由基的降解特性,也可以說明氫氧自由基的降解機制才是整個壓電降解過程的主要機制。另外利用螢光效應光譜儀的分析鑑定,也發現氫氧自由基的訊號隨著初始粉末量的提升而提升,因此我們可以確認在此活性溶液中確實存在氫氧自由基並且具有降解染劑之能力,另外我們也發現溶液中之氫氧自由基之存在時間比起以往發表的研究要高出許多,本團隊認為這是因為F-center的緣故所造成,並詳細說明其反應過程及機制,來解釋這樣驚人的氫氧自由基存在時間。
In the research field of piezo-catalytic material, the primary way of degradation process is mixing powder materials with dye solution directly. The color variation of dye solution is easy to be observed. In our previous work, MoS2 (Molybdenum disulfide) nanoflowers have highly piezo-catalytic properties. However, the greatly specific surface area of MoS2 nanoflowers results in the significant adsorption effect, which will hinder the analysis of degradation.
In this study, we reported a new way of degradation, we mixed MoS2 nanoflowers with Di water and then ultrasonically vibrated for a period of time. Finally, we used centrifuge to separate the powder and solution, which was confirmed by simple measurement that over 99 % of the powder was removed. There would be a little single- and few- layered MoS2 nanoflowers remained in the solution and we found that the solution was catalytic. The catalytic properties of as-prepared solution were found to be proportional to the amount of MoS2 nanoflowers we added. The catalytic activity of the solution for decomposing Rhodamine B (RhB) solution could reach 80 % when 250 mg of the MoS2 nanoflowers was added. We could ignore the adsorption effect because of the 99 % removal of the powder. Therefore, OH radicals degradation mechanism could be regarded as the primary mechanism. The florescent spectra indicated the concentration of OH radicals in our as-prepared solution increases with the increasing amount of the MoS2 nanoflowers we added. The lifetime of OH radical in our as-prepared solution is up to five hours according to our observation. Our team thought that it is because of the F-center defects, which contributed to the amazingly long lifetime of OH radical.
[1] F. Schwierz, "Graphene transistors," Nat Nano, vol. 5, pp. 487-496, 07//print 2010.
[2] J. He, D. He, Y. Wang, and H. Zhao, "Photocarrier dynamics in transition metal dichalcogenide alloy Mo0.5W0.5S2," Optics Express, vol. 23, pp. 33370-33377, 2015/12/28 2015.
[3] N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, et al., "Photosensor Device Based on Few-Layered WS2 Films," Advanced Functional Materials, vol. 23, pp. 5511-5517, 2013.
[4] J. Guo, X. Chen, Y. Yi, W. Li, and C. Liang, "Layer-controlled synthesis of graphene-like MoS2 from single source organometallic precursor for Li-ion batteries," RSC Advances, vol. 4, pp. 16716-16720, 2014.
[5] D. K. Nandi, U. K. Sen, D. Choudhury, S. Mitra, and S. K. Sarkar, "Atomic Layer Deposited MoS2 as a Carbon and Binder Free Anode in Li-ion Battery," Electrochimica Acta, vol. 146, pp. 706-713, 2014/11/10/ 2014.
[6] W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, et al., "Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics," Nature, vol. 514, pp. 470-474, 10/23/print 2014.
[7] F. Xue, L. Chen, L. Wang, Y. Pang, J. Chen, C. Zhang, et al., "MoS2 Tribotronic Transistor for Smart Tactile Switch," Advanced Functional Materials, vol. 26, pp. 2104-2109, 2016.
[8] J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, "Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis," Nat Mater, vol. 11, pp. 963-969, 11//print 2012.
[9] Q. Tang and D.-e. Jiang, "Mechanism of Hydrogen Evolution Reaction on 1T-MoS2 from First Principles," ACS Catalysis, vol. 6, pp. 4953-4961, 2016/08/05 2016.
[10] J. Yang, D. Voiry, S. J. Ahn, D. Kang, A. Y. Kim, M. Chhowalla, et al., "Two-Dimensional Hybrid Nanosheets of Tungsten Disulfide and Reduced Graphene Oxide as Catalysts for Enhanced Hydrogen Evolution," Angewandte Chemie International Edition, vol. 52, pp. 13751-13754, 2013.
[11] N. T. Shelke and B. R. Karche, "Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector," Journal of Alloys and Compounds, vol. 653, pp. 298-303, 2015/12/25/ 2015.
[12] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, et al., "Single-Layer MoS2 Phototransistors," ACS Nano, vol. 6, pp. 74-80, 2012/01/24 2012.
[13] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, et al., "Understanding TiO2 Photocatalysis: Mechanisms and Materials," Chemical Reviews, vol. 114, pp. 9919-9986, 2014/10/08 2014.
[14] V. Binas, D. Venieri, D. Kotzias, and G. Kiriakidis, "Modified TiO2 based photocatalysts for improved air and health quality," Journal of Materiomics, vol. 3, pp. 3-16, 3// 2017.
[15] Y. Lai, M. Meng, Y. Yu, X. Wang, and T. Ding, "Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance," Applied Catalysis B: Environmental, vol. 105, pp. 335-345, 2011/06/22/ 2011.
[16] J. F. Baumard and E. Tani, "Thermoelectric power in reduced pure and Nb-doped TiO2 rutile at high temperature," physica status solidi (a), vol. 39, pp. 373-382, 1977.
[17] R. Zanoni, G. Righini, A. Montenero, G. Gnappi, A. Bearzotti, G. Montesperelli, et al., "Surface composition of alkali-dope TiO2 films for sensors investigated by XPS," Sensors and Actuators B: Chemical, vol. 25, pp. 886-888, 1995/04/01/ 1995.
[18] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, et al., "Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells," Journal of the American Chemical Society, vol. 134, pp. 17396-17399, 2012/10/24 2012.
[19] L. Schmidt-Mende, W. M. Campbell, Q. Wang, K. W. Jolley, D. L. Officer, M. K. Nazeeruddin, et al., "Zn-Porphyrin-Sensitized Nanocrystalline TiO2 Heterojunction Photovoltaic Cells," ChemPhysChem, vol. 6, pp. 1253-1258, 2005.
[20] A. H. Zyoud, N. Zaatar, I. Saadeddin, C. Ali, D. Park, G. Campet, et al., "CdS-sensitized TiO2 in phenazopyridine photo-degradation: Catalyst efficiency, stability and feasibility assessment," Journal of Hazardous Materials, vol. 173, pp. 318-325, 2010/01/15/ 2010.
[21] L. Wang, S. Liu, Z. Wang, Y. Zhou, Y. Qin, and Z. L. Wang, "Piezotronic Effect Enhanced Photocatalysis in Strained Anisotropic ZnO/TiO2 Nanoplatelets via Thermal Stress," ACS Nano, vol. 10, pp. 2636-2643, 2016/02/23 2016.
[22] F. Zhang, S. Niu, W. Guo, G. Zhu, Y. Liu, X. Zhang, et al., "Piezo-phototronic Effect Enhanced Visible/UV Photodetector of a Carbon-Fiber/ZnO-CdS Double-Shell Microwire," ACS Nano, vol. 7, pp. 4537-4544, 2013/05/28 2013.
[23] F. Zhang, Y. Ding, Y. Zhang, X. Zhang, and Z. L. Wang, "Piezo-phototronic Effect Enhanced Visible and Ultraviolet Photodetection Using a ZnO–CdS Core–Shell Micro/nanowire," ACS Nano, vol. 6, pp. 9229-9236, 2012/10/23 2012.
[24] M. B. Starr and X. Wang, "Fundamental Analysis of Piezocatalysis Process on the Surfaces of Strained Piezoelectric Materials," Scientific Reports, vol. 3, p. 2160, 07/08
04/25/received
06/20/accepted 2013.
[25] H. Lin, Z. Wu, Y. Jia, W. Li, R.-K. Zheng, and H. Luo, "Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers," Applied Physics Letters, vol. 104, p. 162907, 2014.
[26] J. M. Wu, W. E. Chang, Y. T. Chang, and C.-K. Chang, "Piezo-Catalytic Effect on the Enhancement of the Ultra-High Degradation Activity in the Dark by Single- and Few-Layers MoS2 Nanoflowers," Advanced Materials, vol. 28, pp. 3718-3725, 2016.
[27] N. Berntsen, T. Gutjahr, L. Loeffler, J. R. Gomm, R. Seshadri, and W. Tremel, "A Solvothermal Route to High-Surface-Area Nanostructured MoS2," Chemistry of Materials, vol. 15, pp. 4498-4502, 2003/11/01 2003.
[28] M. Anpo and M. Che, "Applications of Photoluminescence Techniques to the Characterization of Solid Surfaces in Relation to Adsorption, Catalysis, and Photocatalysis," Advances in Catalysis, vol. 44, pp. 119-257, 1999/01/01/ 1999.
[29] A. Fujishima, X. Zhang, and D. A. Tryk, "TiO2 photocatalysis and related surface phenomena," Surface Science Reports, vol. 63, pp. 515-582, 2008/12/15/ 2008.
[30] K. Nakata and A. Fujishima, "TiO2 photocatalysis: Design and applications," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 13, pp. 169-189, 2012/09/01/ 2012.
[31] W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, and Z. Zou, "Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2," Applied Catalysis B: Environmental, vol. 69, pp. 138-144, 2007/01/15/ 2007.
[32] S. Gu, Y. Chen, X. Yuan, H. Wang, X. Chen, Y. Liu, et al., "Facile synthesis of CeO2 nanoparticle sensitized CdS nanorod photocatalyst with improved visible-light photocatalytic degradation of rhodamine B," RSC Advances, vol. 5, pp. 79556-79564, 2015.
[33] X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, et al., "Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires," Nano Energy, vol. 13, pp. 414-422, 2015/04/01/ 2015.
[34] T. Hahn and H. Klapper, "Crystallographic and noncrystallographic point groups," in International Tables for Crystallography Volume A: Space-group symmetry, T. Hahn, Ed., ed Dordrecht: Springer Netherlands, 2002, pp. 762-803.
[35] M. M. Alyörük, Y. Aierken, D. Çakır, F. M. Peeters, and C. Sevik, "Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides," The Journal of Physical Chemistry C, vol. 119, pp. 23231-23237, 2015/10/08 2015.
[36] K.-A. N. Duerloo, M. T. Ong, and E. J. Reed, "Intrinsic Piezoelectricity in Two-Dimensional Materials," The Journal of Physical Chemistry Letters, vol. 3, pp. 2871-2876, 2012/10/04 2012.
[37] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, 2004.
[38] L. M. Xie, "Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications," Nanoscale, 8th October 2015.
[39] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, et al., "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, pp. 197-200, 11/10/print 2005.
[40] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene photonics and optoelectronics," Nat Photon, vol. 4, pp. 611-622, 09//print 2010.
[41] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, pp. 109-162, 01/14/ 2009.
[42] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, et al., "Two-dimensional atomic crystals," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 10451-10453, July 26, 2005 2005.
[43] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, et al., "Graphene and Graphene Oxide: Synthesis, Properties, and Applications," Advanced Materials, vol. 22, pp. 3906-3924, 2010.
[44] L. Ming-Wei, L. Cheng, Z. Yiyang, Y. Hyeun Joong, C. Mark Ming-Cheng, A. A. Luis, et al., "Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors," Nanotechnology, vol. 22, p. 265201, 2011.
[45] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, "Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors," Science, vol. 319, pp. 1229-1232, 2008.
[46] M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, "Energy Band-Gap Engineering of Graphene Nanoribbons," Physical Review Letters, vol. 98, p. 206805, 05/16/ 2007.
[47] R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, et al., "Bandgap opening in graphene induced by patterned hydrogen adsorption," Nat Mater, vol. 9, pp. 315-319, 04//print 2010.
[48] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, et al., "Direct observation of a widely tunable bandgap in bilayer graphene," Nature, vol. 459, pp. 820-823, 06/11/print 2009.
[49] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat Nano, vol. 7, pp. 699-712, 11//print 2012.
[50] S. A. Han, R. Bhatia, and S.-W. Kim, "Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides," Nano Convergence, vol. 2, p. 17, 2015// 2015.
[51] R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, et al., "Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets," Accounts of Chemical Research, vol. 48, pp. 56-64, 2015/01/20 2015.
[52] N. Alem, R. Erni, C. Kisielowski, M. D. Rossell, W. Gannett, and A. Zettl, "Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy," Physical Review B, vol. 80, p. 155425, 10/12/ 2009.
[53] C. R. Dean, A. F. Young, MericI, LeeC, WangL, SorgenfreiS, et al., "Boron nitride substrates for high-quality graphene electronics," Nat Nano, vol. 5, pp. 722-726, 10//print 2010.
[54] K. Kalantar-zadeh, A. Vijayaraghavan, M.-H. Ham, H. Zheng, M. Breedon, and M. S. Strano, "Synthesis of Atomically Thin WO3 Sheets from Hydrated Tungsten Trioxide," Chemistry of Materials, vol. 22, pp. 5660-5666, 2010/10/12 2010.
[55] M. Osada and T. Sasaki, "Two-Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks," Advanced Materials, vol. 24, pp. 210-228, 2012.
[56] B. Radisavljevic, M. B. Whitwick, and A. Kis, "Integrated Circuits and Logic Operations Based on Single-Layer MoS2," ACS Nano, vol. 5, pp. 9934-9938, 2011/12/27 2011.
[57] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, et al., "Emerging Photoluminescence in Monolayer MoS2," Nano Letters, vol. 10, pp. 1271-1275, 2010/04/14 2010.
[58] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, "Photoluminescence from Chemically Exfoliated MoS2," Nano Letters, vol. 11, pp. 5111-5116, 2011/12/14 2011.
[59] G. L. Frey, K. J. Reynolds, R. H. Friend, H. Cohen, and Y. Feldman, "Solution-Processed Anodes from Layer-Structure Materials for High-Efficiency Polymer Light-Emitting Diodes," Journal of the American Chemical Society, vol. 125, pp. 5998-6007, 2003/05/01 2003.
[60] A. D. Yoffe, "Electronic properties of low dimensional solids: The physics and chemistry of layer type transition metal dichalcogenides and their intercalate complexes," Solid State Ionics, vol. 39, pp. 1-7, 1990/06/01/ 1990.
[61] P. Joensen, R. F. Frindt, and S. R. Morrison, "Single-layer MoS2," Materials Research Bulletin, vol. 21, pp. 457-461, 1986/04/01/ 1986.
[62] A. Y. S. Eng, A. Ambrosi, Z. Sofer, P. Šimek, and M. Pumera, "Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen Composition and Exfoliation Method," ACS Nano, vol. 8, pp. 12185-12198, 2014/12/23 2014.
[63] G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, et al., "Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds," ACS Nano, vol. 6, pp. 3468-3480, 2012/04/24 2012.
[64] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, et al., "Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication," Angewandte Chemie International Edition, vol. 50, pp. 11093-11097, 2011.
[65] Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, et al., "An Effective Method for the Fabrication of Few-Layer-Thick Inorganic Nanosheets," Angewandte Chemie International Edition, vol. 51, pp. 9052-9056, 2012.
[66] V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, "Liquid Exfoliation of Layered Materials," Science, vol. 340, 2013.
[67] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, et al., "Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials," Science, vol. 331, pp. 568-571, 2011.
[68] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, et al., "Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates," Nano Letters, vol. 12, pp. 1538-1544, 2012/03/14 2012.
[69] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, "Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate," Small, vol. 8, pp. 966-971, 2012.
[70] C. Jung, S. M. Kim, H. Moon, G. Han, J. Kwon, Y. K. Hong, et al., "Highly Crystalline CVD-grown Multilayer MoSe(2) Thin Film Transistor for Fast Photodetector," Scientific Reports, vol. 5, p. 15313, 10/19
05/21/received
09/15/accepted 2015.
[71] X. Wang, Y. Gong, G. Shi, W. L. Chow, K. Keyshar, G. Ye, et al., "Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2," ACS Nano, vol. 8, pp. 5125-5131, 2014/05/27 2014.
[72] K. M. McCreary, A. T. Hanbicki, G. G. Jernigan, J. C. Culbertson, and B. T. Jonker, "Synthesis of Large-Area WS(2) monolayers with Exceptional Photoluminescence," Scientific Reports, vol. 6, p. 19159, 01/13
08/12/received
11/13/accepted 2016.
[73] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, et al., "Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary," ACS Nano, vol. 7, pp. 8963-8971, 2013/10/22 2013.
[74] X. Kai, W. Zhenxing, D. Xiaolei, S. Muhammad, J. Chao, and H. Jun, "Atomic-layer triangular WSe 2 sheets: synthesis and layer-dependent photoluminescence property," Nanotechnology, vol. 24, p. 465705, 2013.
[75] Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, et al., "Growth of Large-Area 2D MoS2(1-x)Se2x Semiconductor Alloys," Advanced Materials, vol. 26, pp. 2648-2653, 2014.
[76] H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou, Q. Zhang, et al., "Growth of Alloy MoS2xSe2(1–x) Nanosheets with Fully Tunable Chemical Compositions and Optical Properties," Journal of the American Chemical Society, vol. 136, pp. 3756-3759, 2014/03/12 2014.
[77] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, et al., "Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition," Advanced Materials, vol. 24, pp. 2320-2325, 2012.
[78] X. Li, A. Tang, J. Li, L. Guan, G. Dong, and F. Teng, "Heating-up Synthesis of MoS2 Nanosheets and Their Electrical Bistability Performance," Nanoscale Research Letters, vol. 11, p. 171, 2016.
[79] X. Zhou, J. Jiang, T. Ding, J. Zhang, B. Pan, J. Zuo, et al., "Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2-x nanosheets for high-performance hydrogen evolution," Nanoscale, vol. 6, pp. 11046-11051, 2014.
[80] B. Mahler, V. Hoepfner, K. Liao, and G. A. Ozin, "Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for Photocatalytic Hydrogen Evolution," Journal of the American Chemical Society, vol. 136, pp. 14121-14127, 2014/10/08 2014.
[81] W. Jung, S. Lee, D. Yoo, S. Jeong, P. Miró, A. Kuc, et al., "Colloidal Synthesis of Single-Layer MSe2 (M = Mo, W) Nanosheets via Anisotropic Solution-Phase Growth Approach," Journal of the American Chemical Society, vol. 137, pp. 7266-7269, 2015/06/17 2015.
[82] D. Yoo, M. Kim, S. Jeong, J. Han, and J. Cheon, "Chemical Synthetic Strategy for Single-Layer Transition-Metal Chalcogenides," Journal of the American Chemical Society, vol. 136, pp. 14670-14673, 2014/10/22 2014.
[83] S. Jeong, D. Yoo, J.-t. Jang, M. Kim, and J. Cheon, "Well-Defined Colloidal 2-D Layered Transition-Metal Chalcogenide Nanocrystals via Generalized Synthetic Protocols," Journal of the American Chemical Society, vol. 134, pp. 18233-18236, 2012/11/07 2012.
[84] S. H. Lee, Y. J. Kim, and J. Park, "Shape Evolution of ZnTe Nanocrystals: Nanoflowers, Nanodots, and Nanorods," Chemistry of Materials, vol. 19, pp. 4670-4675, 2007/09/01 2007.
[85] J. van Embden, A. S. R. Chesman, and J. J. Jasieniak, "The Heat-Up Synthesis of Colloidal Nanocrystals," Chemistry of Materials, vol. 27, pp. 2246-2285, 2015/04/14 2015.
[86] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, et al., "Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution," Advanced Materials, vol. 25, pp. 5807-5813, 2013.
[87] J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, et al., "Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution," Journal of the American Chemical Society, vol. 135, pp. 17881-17888, 2013/11/27 2013.
[88] X. Zhang, M. Xue, X. Yang, G. Luo, and F. Yang. (2015, Hydrothermal synthesis and tribological properties of MoSe<sub>2</sub> nanoflowers. Micro & Nano Letters 10(7), 339-342. Available: http://digital-library.theiet.org/content/journals/10.1049/mnl.2015.0014
[89] H. Tang, K. Dou, C.-C. Kaun, Q. Kuang, and S. Yang, "MoSe2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies," Journal of Materials Chemistry A, vol. 2, pp. 360-364, 2014.
[90] S. Ratha and C. S. Rout, "Supercapacitor Electrodes Based on Layered Tungsten Disulfide-Reduced Graphene Oxide Hybrids Synthesized by a Facile Hydrothermal Method," ACS Applied Materials & Interfaces, vol. 5, pp. 11427-11433, 2013/11/13 2013.
[91] W. Li, L. Hu, M. Wang, H. Tang, C. Li, J. Liang, et al., "Synthesis and tribological properties of Mo-doped WSe2 Nanolamellars," Crystal Research and Technology, vol. 47, pp. 876-881, 2012.
[92] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, et al., "From Bulk to Monolayer MoS2: Evolution of Raman Scattering," Advanced Functional Materials, vol. 22, pp. 1385-1390, 2012.
[93] P. Cheng, K. Sun, and Y. H. Hu, "Memristive Behavior and Ideal Memristor of 1T Phase MoS2 Nanosheets," Nano Letters, vol. 16, pp. 572-576, 2016/01/13 2016.
[94] S. Kanazawa, T. Furuki, T. Nakaji, S. Akamine, and R. Ichiki, Measurement of OH radicals in aqueous solution produced by atmospheric-pressure LF plasma jet vol. 6, 2012.
[95] S. Li, I. V. Timoshkin, M. Maclean, S. J. Macgregor, M. P. Wilson, M. J. Given, et al., "Fluorescence detection of hydroxyl radicals in water produced by atmospheric pulsed discharges," IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, pp. 1856-1865, 2015.
[96] R. Schwarzwald, P. Monkhouse, and J. Wolfrum, "Picosecond fluorescence lifetime measurement of the OH radical in an atmospheric pressure flame," Chemical Physics Letters, vol. 142, pp. 15-18, 1987/12/04 1987.
[97] J. Zhang and Y. Nosaka, "Mechanism of the OH Radical Generation in Photocatalysis with TiO2 of Different Crystalline Types," The Journal of Physical Chemistry C, vol. 118, pp. 10824-10832, 2014/05/22 2014.
[98] H.-J. F. E. Umbach, Adsorption on Ordered Surfaces of Ionic Solids and Thin Films, 1993.
[99] X. Lu, Y. Lin, H. Dong, W. Dai, X. Chen, X. Qu, et al., "One-Step Hydrothermal Fabrication of Three-dimensional MoS(2) Nanoflower using Polypyrrole as Template for Efficient Hydrogen Evolution Reaction," Scientific Reports, vol. 7, p. 42309, 02/14
10/10/received
01/08/accepted 2017.
[100] V. Dierolf, H. Paus, and F. Luty, "Spin-orbit structure of F centers and F -center\char21{}${\mathrm{OH}}^{\mathrm{\ensuremath{-}}}$ pairs in cesium halides," Physical Review B, vol. 43, pp. 9879-9887, 04/15/ 1991.
[101] K. Byrappa, A. K. Subramani, S. Ananda, K. M. L. Rai, R. Dinesh, and M. Yoshimura, "Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO," Bulletin of Materials Science, vol. 29, pp. 433-438, October 01 2006.