研究生: |
梁惟勝 |
---|---|
論文名稱: |
Evaluating the Robustness of a Bootstrapping Patent Retrieval Method |
指導教授: | 林福仁 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 科技管理研究所 Institute of Technology Management |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | bootstrapping patent retrieval 、claim structure |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在開發新產品時,專利的檢索扮演了一個極為重要的角色。產品經理需要在開發產品之前快速且正確的找出產品相關專利,判斷新產品是否具有競爭優勢。同時,亦可藉由專利的搜尋來避免可能的專利侵權問題而造成的有形及無形的資產損失。而在搜尋專利時,專業知識在正確性與效率上,為一不可或缺的能力。產品經理若能利用自身對於領域中所具備的基本知識來找出重要且與新產品相關的專利,則可減少企業在專利搜尋上所需花費的時間與人力成本。
陳榮錡(2008)所提出的Bootstrapping Patent Retrieval方法中,以一小群由專家所指定的專利進行一個擴張機制,將一小群專利擴展至包含所有可能的相關專利範圍,以減少後續利用元件之間關係比對專利相似程度所需要的計算需求。而本研究修改由陳榮錡(2008)所提的方法,並驗證在此方法中,由專家所指定的小群專利,是否為不可取代的。若產品經理人能經由本身對於產品的基本知識,由自行辨識的小群重要專利來進行同樣的擴張機制,而獲得與專家相近的結果,將能節省在專利檢索上的成本。本研究結果,發現由專家所提供的專利和非專家所提供的專利,經過專利擴張機制後,其所獲得的搜尋專利的範圍重疊之處不大,代表了專家在提供起始專利的不可取代性。
Paten retrieval plays a very important role for research and development teams to design new products. Product managers must retrieve relevant patents efficiently and correctly before developing products in order to verify the competitive advantage of new products. Enterprises could prevent from loosing of tangible and intangible assets for patent infringements by retrieving potential relevant patents. Domain knowledge is indispensable while searching relevant patents in an effective and efficient way. If product mangers could retrieve relevant patent which are important and relevant to the new developing product by their own basic technical knowledge in the field, it could save the cost of time and human resources.
A bootstrapping patent retrieval approach proposed by Chen (2008) provides a mechanism which could expand the patents identified by experts into a scope including possible relevant patent sets. It reduces the effort of computation for comparing patent similarity with the structure of inventions. In this research, we proposed a bootstrapping approach modified from Chen’s approach (Chen, 2008), and verified whether the patents identified by domain experts could be replaced or not. That is, is the bootstrapping patent retrieval approach sensible to the input patents? If a product manager could expand the patent into a patent set similar to what experts’ have expanded by his technical domain knowledge, the product manager could save the cost of retrieving patents to the relevant target products. The evaluation results show that the bootstrapping patent retrieval system is sensible to the input patents; that is, the candidate patent sets expanded by patents suggested by experts vs. non-experts differ significantly.
Allison, J. R., Lemley, M. A., Moore, K. A., & Trunkey, R. D. (2003). Valuable Patents: SSRN.
Chen, L,C.(2008). The study of searching relevant patents of multi-disciplinary products based on patent claim structure.
Ernst, H. (1997). The Use of Patent Data for Technological Forecasting: The Diffusion of CNC-Technology in the Machine Tool Industry: Kluwer Academic Publishers.
Fujii, A. (2007). Enhancing patent retrieval by citation analysis, Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval. Amsterdam, The Netherlands: ACM.
Gerard, S. & Chris, B. (1987). Term Weighting Approaches in Automatic Text Retrieval: Cornell University.
Gerard, S. & Michael, J. M. (1986). Introduction to Modern Information Retrieval: McGraw-Hill, Inc.
Abowd, Gregory D. & Mynatt, E. D. (2000). Charting past, present, and future research in ubiquitous computing (Vol. 7, pp. 29-58): ACM.
Han, J. & Kamber, M. (2006). Data Mining: Concepts and Techniques: Services Manager Simon Crump.
Mase, H. Matsubayashi, T. Ogawa, Y. Iwayama, M. Oshio, T. (2005). Proposal of two-stage patent retrieval method considering the claim structure (Vol. 4, pp. 190-206): ACM.
Huang, F. M.(2007). The study of patent prior art retrieval using claim structure and link analysis
Kishida, K.(2001) Feedback method for document retrieval using numerical values on relevance given by users. (IPSJ SIG Notes Fundamental Infology, No.61, pages 189-196)
Xu, J & Croft, W. B. (1996). Query expansion using local and global document analysis, Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval. Zurich, Switzerland: ACM.
Kazuaki, K. (2003). Pseudo relevance feedback method based on taylor expansion of retrieval function in NTCIR-3 patent retrieval task, Proceedings of the ACL-2003 workshop on Patent corpus processing - Volume 20: Association for Computational Linguistics.
Kohonen, T. (2001). The Self-Organizing Map: Springer-Verlag, Verlag, Berline, Heidelberg, New York.
Markellos, K. Perdikuri, K. Markellou,P. Sirmakessis, S. Mayritsakis,G. & Tsakalidis, A. (2002). Knowledge discovery in patent databases, Proceedings of the eleventh international conference on Information and knowledge management. McLean, Virginia, USA: ACM Press.
Lim, S.-S. Jung, S.-W. Kwon, H.-C (2004). Improving patent retrieval system using ontology. Paper presented at the Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE.
Lai, K.-K., & Wu, S.-J. (2003). Using the patent co-citation approach to establish a new patent classification system: Information Processing and Management.
Larkey, L. S. (1999). A patent search and classification system, Proceedings of the fourth ACM conference on Digital libraries. Berkeley, California, United States: ACM.
Makoto, I., Atsushi, F., Noriko, K., & Yuzo, M. (2003). An empirical study on retrieval models for different document genres: patents and newspaper articles, Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval. Toronto, Canada: ACM Press.
Mark, W. (1995). The computer for the 21st century. In Human-computer interaction: toward the year 2000 (pp. 933-940): Morgan Kaufmann Publishers Inc.
Murphy, O. J. (1990). Nearest Neighbor Pattern Classification Perceptrons: IEEE.
Nagy, G. (1968). State of the Art in Pattern Recognition: IEEE.
Park, C. Liu, J. & Chou, P. H. (2005). Eco: an ultra-compact low-power wireless sensor node for real-time motion monitoring
Eco: an ultra-compact low-power wireless sensor node for real-time motion monitoring. Paper presented at the Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on.
Brin,S. & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine, Proceedings of the seventh international conference on World Wide Web 7. Brisbane, Australia: Elsevier Science Publishers B. V.
Sheremetyeva, S. (2003). Natural language analysis of patent claims, Proceedings of the ACL-2003 workshop on Patent corpus processing - Volume 20: Association for Computational Linguistics.
Sheremetyeva, S. Nirenburg, S. & I, N. (1996). Generating patent claims from interactive input, Proceedings of the 8th international workshop on natural language generation. Hersmonceux, Sussex, UK.
Salton, G. Wong, A. & Yang, C. S. (1975). A vector space model for automatic indexing (Vol. 18, pp. 613-620): ACM.
Wartburg, I. v., Teichert Thorsten, & Katja, R. (2005). Inventive progress measured by multi-stage patent citation analysis. Research Policy, 34(10), 1591-1607.
Yang, Y. & Pedersen, J. O. (1997). A Comparative Study on Feature Selection in Text Categorization, Proceedings of the Fourteenth International Conference on Machine Learning: Morgan Kaufmann Publishers Inc.