簡易檢索 / 詳目顯示

研究生: 莊啟宏
Chi-Hung Chuang
論文名稱: 有機共軛高分子太陽電池之多層P-I-N結構設計與製程研究
Design, fabrication and investigation of multilayered p-i-n conjugated polymer based solar cells
指導教授: 洪勝富
Sheng-Fu Horng
孟心飛
Hsin-Fei Meng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 83
中文關鍵詞: 溶液製程緩衝層多層P-I-N結構
外文關鍵詞: solution-process, buffer layer, multilayer, p-i-n structure
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機共軛高分子太陽電池具有製程簡易,可製作大面積,質量輕且可撓曲等優點,故能製作出低成本之太陽電池。然而,溶液互溶是在製作有機高分子太陽電池多層結構時最主要的問題之一。本研究分別以高溫烘烤、旋轉潤濕、及緩衝層技術解決此問題。結果發現以丙二醇當緩衝層之技術,能降低溶液互溶的問題,並提高多層結構元件的效率。
    本研究以P3HT(poly(3-hexythiophene))及PCBM([6,6]-phenyl C61-butyric acid methyl ester)混合(blend)為主動層材料。改良原本的塊材異質接面(bulk heterojunction)結構。在P3HT:PCBM(I layer)比例1:1 wt的主動層之前,旋轉塗佈P3HT比例高的主動層(P layer)在陽極端,之後在陰極端加上P3HT比例少的主動層(N layer)。這種漸層分佈混合材料的結構,同時具有激子(exciton)分離區域面積較大的好處以及較佳的載子傳輸效率,能夠有效地提高太陽電池效率。
    研究結果成功地製作出雙層結構元件以及P3HT-rich/blend/PCBM-rich之多層P-I-N結構,發現此結構能抑制操作電壓附近的暗電流,有效降低復合電流。從電路模型的參數萃取觀察到並聯電阻(shunt resistance, Rsh)的增加,使得操作電壓較高及FF的增加。能量轉換效率從2.46%提高到3.35%。
    此緩衝層技術對製作多層結構或是串接(tandem)結構提供一個新的方法,其降低漏電流及復合電流的優點,將來可應用在製作大面積元件,而改善大面積化之後,更嚴重的漏電流及復合電流。


    Polymer solar cells (PSCs) exhibit many advantages such as processing feasibility, capability of scaling up to large area, light weigh and flexibility. Thus we can fabricate cost-effective solar cells. However, mutual dissolution is one of the main problems for achieving PSCs with multilayer structure. In this work, we solve the problem by high temperature baking, spin-rinsing and buffer layer technique. The results show that this buffer layer technique with glycol would reduce the mutual dissolution problem and enhance the efficiency of multilayer structure devices.
    We use blending of P3HT and PCBM as active material in our study. Our main research is to modify the conventional bulk heterojunction (BHJ) structure with buffer layer technique. We spin an extra P3HT-rich layer (P layer) near the anode before a normal layer with 1:1 wt of P3HT/PCBM (I layer) being deposited and insert an extra P3HT-poor layer (N layer) near the cathode. The gradually-distributed active layer allow for efficient exciton separation and better carrier extraction at the same time. Therefore, this leads to a better PCE of PSCs.
    We successfully demonstrated bi-layer structure devices and multilayer p-i-n structure of P3HT-rich/blend/PCBM-rich in our study. The result shows that the dark current near operating voltage is suppressed. Besides, the recombination is significantly decreased. From the parameters extracted form the circuit model, an increased shunt resistance (Rsh) is observed. This increased Rsh lead to a higher operating voltage and thus an increased FF. The power conversion efficiency with P-I-N structured is enhanced from 2.46% to 3.35%!
    The buffer layer technique can be used as a new approach for fabrication of multilayer PSCs or tandem cells. Besides, the P-I-N structure is benefiting for lowering the leakage current and recombination current. This has potential of being applied in fabrication of large-area PSCs which usually have more leakage path and higher recombination current.

    中文摘要------------------------------------------------------------------------------------------I 英文摘要-----------------------------------------------------------------------------------------II 致謝----------------------------------------------------------------------------------------------IV 目錄----------------------------------------------------------------------------------------------V 圖目錄-----------------------------------------------------------------------------------------VIII 表目錄-------------------------------------------------------------------------------------------XI 第一章 序論------------------------------------------------------------------------------------1 1.1 研究背景-------------------------------------------------------------------------1 1.1.1 前言----------------------------------------------------------------1 1.1.2 太陽電池的產業發展-------------------------------------------2 1.1.3 有機太陽電池發展歷史----------------------------------------3 1.2 研究動機-------------------------------------------------------------------------5 1.2.1 有機共軛高分子太陽電池的優勢----------------------------5 1.2.2 為何製作多層P-I-N結構--------------------------------------6 1.2.3 多層P-I-N結構文獻回顧--------------------------------------8 1.3 論文架構-------------------------------------------------------------------------9 第二章 實驗原理----------------------------------------------------------------------------10 2.1 太陽電池基本原理與參數--------------------------------------------------10 2.1.1 太陽電池基本原理---------------------------------------------10 2.1.2 太陽電池元件參數---------------------------------------------13 2.1.3 太陽電池機制---------------------------------------------------17 2.2 材料特性與選擇--------------------------------------------------------------21 2.2.1 有機高分子材料簡介------------------------------------------21 2.2.2 donor 材料:P3HT--------------------------------------------23 2.2.3 acceptor 材料:C60/PCBM----------------------------------23 2.2.4 電洞傳輸層及電極選擇---------------------------------------25 2.2.5 溶劑特性與選擇------------------------------------------------26 2.3 有機共軛高分子太陽電池的元件結構與能帶圖-----------------------27 2.3.1 能帶理論---------------------------------------------------------27 2.3.2 元件結構與能帶圖---------------------------------------------30 2.4 有機共軛高分子載子傳輸理論--------------------------------------------31 第三章 實驗方法與流程-------------------------------------------------------------------34 3.1 ITO 基板圖樣化------------------------------------------------------------34 3.2 ITO 基板清洗---------------------------------------------------------------36 3.3 高分子層之成膜--------------------------------------------------------------37 3.3.1 PEDOT:PSS層之成膜-------------------------------------37 3.3.2 主動層溶液的配置---------------------------------------------38 3.3.3 主動層之成膜---------------------------------------------------38 3.4 陰極蒸鍍-----------------------------------------------------------------------39 3.5 封裝-----------------------------------------------------------------------------39 3.6 量測系統-----------------------------------------------------------------------40 3.7 多層元件的製程--------------------------------------------------------------40 3.7.1 多層元件的概念------------------------------------------------40 3.7.2 緩衝層材料------------------------------------------------------41 3.7.3 緩衝層使用方法------------------------------------------------41 第四章 實驗結果與討論-------------------------------------------------------------------43 4.1 雙層結構元件測試-----------------------------------------------------------43 4.1.1 高溫烘烤與旋轉潤濕製作P3HT/blend雙層結構--------43 4.1.2 blend/C60雙層結構--------------------------------------------53 4.2 利用緩衝層技術製作雙層元件--------------------------------------------59 4.2.1 以緩衝層技術製作雙層結構---------------------------------59 4.2.2 應用不同溶劑製作雙層結構---------------------------------60 4.3 多層P-I-N結構---------------------------------------------------------------64 4.3.1 P3HT/blend/C60 多層P-I-N結構---------------------------64 4.3.2 P3HT-rich/blend/PCBM-rich 多層P-I-N結構-----------66 4.3.3 多層P-I-N結構元件特性討論--------------------------------71 第五章 結論與未來發展-------------------------------------------------------------------79 參考文獻----------------------------------------------------------------------------------------80 圖目錄 第一章 圖 1-1 未來各種能源使用量預測-----------------------------------------------------------1 圖 1-2 染料敏化太陽電池操作原理--------------------------------------------------------4 圖 1-3 有機太陽電池結構演進--------------------------------------------------------------7 圖 1-4 小分子太陽電池多層P-I-N結構---------------------------------------------------8 第二章 圖 2-1 傳統無機太陽電池PN接面-------------------------------------------------------10 圖 2-2 激子受空乏區內建電場分離------------------------------------------------------10 圖 2-3 理想太陽電池之等效電路---------------------------------------------------------11 圖 2-4 理想太陽電池照光I-V特性曲線-------------------------------------------------11 圖 2-5 實際太陽電池之等效電路---------------------------------------------------------12 圖 2-6 理想和實際太陽電池照光I-V特性曲線----------------------------------------12 圖 2-7 實際太陽電池照光後I-V特性曲線及元件參數--------------------------------15 圖 2-8 改變不同串、並聯電阻下的太陽電池I-V特性曲線--------------------------16 圖 2-9 短路情況下的有機太陽電池元件機制------------------------------------------18 圖 2-10 Type II的能帶圖------------------------------------------------------------------19 圖 2-11 太陽光譜圖--------------------------------------------------------------------------21 圖 2-12 聚乙炔(polyacetylene, PA)與聚□吩(polythiophene, PT)結構圖-----------22 圖 2-13 P3HT結構圖-----------------------------------------------------------------------23 圖 2-14 C60與PCBM結構圖-------------------------------------------------------------24 圖 2-15 P3HT與PCBM之吸收光譜----------------------------------------------------24 圖 2-16 PEDOT:PSS結構圖-------------------------------------------------------------25 圖 2-17 1, 2-dichlorobenzene結構圖------------------------------------------------------26 圖 2-18 toluene結構圖----------------------------------------------------------------------27 圖 2-19 金屬與無機半導體材料形成界面時的能帶圖--------------------------------28 圖 2-20 有機半導體簡易能帶圖畫法-----------------------------------------------------29 圖2-21 多層P-I-N結構之一----------------------------------------------------------------30 圖2-22 多層P-I-N結構之二----------------------------------------------------------------30 圖 2-23 多層P-I-N結構能帶示意圖------------------------------------------------------31 圖 2-24 熱離子發射理論示意圖-----------------------------------------------------------33 圖2-25 Fowler-Nordheim穿遂效應示意圖---------------------------------------------34 第三章 圖 3-1 ITO玻璃圖樣化示意圖------------------------------------------------------------36 圖 3-2 PEDOT:PSS成膜示意圖--------------------------------------------------------37 圖 3-3 主動區成膜示意圖------------------------------------------------------------------38 圖 3-4 陰極蒸鍍示意圖---------------------------------------------------------------------39 圖 3-5 元件封裝示意圖---------------------------------------------------------------------39 圖 3-6 量測系統示意圖---------------------------------------------------------------------40 圖 3-7 丙二醇的化學結構式---------------------------------------------------------------41 圖 3-8 以緩衝層技術製作雙層元件------------------------------------------------------42 第四章 圖 4-1 blend單層與P3HT/blend雙層不同轉速及rinse之照光I-V曲線----------45 圖 4-2 blend單層與P3HT/blend雙層@3000rpm照光I-V曲線-------------------45 圖 4-3 不同的烘烤時間@P3HT 3000rpm------------------------------------------------47 圖 4-4 不同的烘烤時間@P3HT 450rpm-------------------------------------------------47 圖 4-5 不同轉速的DCB rinse--------------------------------------------------------------48 圖 4-6 DCB spin rinse @P3HT 3000rpm------------------------------------------------49 圖 4-7 綜合較佳條件------------------------------------------------------------------------50 圖 4-8不同處理條件的P3HT層的差異-------------------------------------------------52 圖 4-9 先以DCB rinse的影響之一-------------------------------------------------------52 圖 4-10 先以DCB rinse的影響之二------------------------------------------------------53 圖 4-11 不同C60厚度@主動層450rpm的照光I-V曲線-----------------------------55 圖 4-12 不同C60厚度@主動層700rpm的照光I-V曲線-----------------------------55 圖 4-13 不同C60厚度@主動層1000rpm的照光I-V曲線----------------------------56 圖 4-14 不同主動層轉速@C60 1nm-------------------------------------------------------57 圖 4-15 不同主動層轉速@C60 2nm-------------------------------------------------------57 圖 4-16 不同主動層轉速@C60 3nm-------------------------------------------------------58 圖 4-17 單層元件與雙層元件的照光I-V曲線圖---------------------------------------60 圖 4-18 不同溶劑雙層元件比較之照光I-V曲線---------------------------------------62 圖 4-19 不同溶劑雙層元件比較之順偏照光I-V曲線---------------------------------62 圖 4-20 DCB P-I-N 四種結構的照光曲線---------------------------------------------65 圖 4-21 DCB P-I-N 四種結構的吸收---------------------------------------------------65 圖 4-22 P-I-N結構中不同N層的比較-------------------------------------------------67 圖 4-23 不同轉速的P-I-N結構------------------------------------------------------------69 圖 4-24 不同轉速的P-I-N結構比較@工三地下室------------------------------------70 圖 4-25 不同轉速的P-I-N結構比較@ITRI---------------------------------------------71 圖 4-26 P-I-N與I結構比較---------------------------------------------------------------72 圖 4-27 P-I-N結構照光I-V特性及效率------------------------------------------------73 圖 4-28 P-I-N結構暗電流特性-----------------------------------------------------------73 圖 4-29 Jph對Vo-V作圖之I-V特性曲線---------------------------------------------74 圖 4-30 I之Jph- Veff曲線-----------------------------------------------------------------75 圖 4-31 P-I-N之Jph- Veff曲線-----------------------------------------------------------75 圖 4-32 參數粹取電路模型---------------------------------------------------------------76 圖4-33 參數f(v)之對數I-V特性曲線--------------------------------------------------78 表目錄 表 1-1 各種太陽電池效率比較--------------------------------------------------------------3 表 1-2 有機太陽電池比較--------------------------------------------------------------------6 表 3-1 丙二醇黏度與溫度關係表---------------------------------------------------------41 表 4-1 不同主動層轉速及C60厚度之參數比較-----------------------------------------58 表 4-2 不同溶劑雙層元件之參數比較---------------------------------------------------63 表 4-3 P-I-N四種結構元件參數比較----------------------------------------------------77

    1. R. A. Kerr, “Climate change - Scientists tell policymakers we're all warming the world,” Science, 315, 754 (2007)
    2. D. M. Chapin, C. S. Fuller, and G.L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys. 25, 676 (1954).
    3. Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ
    substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. : Res. Appl. 7, 471 (1999).
    4. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671 (1976).
    5. K. Sriprapa and P. Sichanugrist, “High efficiency amorphous/microcrystalline
    silicon solar cell fabricated on metal substrate,” Photovoltaic Energy Conversion,
    2003. Proceedings of 3rd World Conference on Volume 3, Page(s):2799 - 2800
    (2003)
    6. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hason,
    and R. Noufi, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt.: Res. Appl. 7, 311 (1999).
    7. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar Cell Efficiency
    Tables (Version 31),” Prog. Photovolt. : Res. Appl. 16, 61-67 (2008)
    8. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005)
    9. K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics” Appl. Phys. Lett. 90, 163511 (2007)
    10. C.W. Tang, “Two-layer organic photovoltaic cell,” App. Phys. Lett. 48, 183 (1986)
    11. B. O’Regan and M. A. Gr□tzel, “A low cost, high efficiency solar cell based on
    dye-sensitized colloidal TiO2 films,” Nature 353, 737 (1991).
    12. L. Bin, W. Liduo, K. Bonan, W. Peng, and Q. Yong, “Review of recent progress in solid-state dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90, 549 (2006).
    13. website of “Research Institute of Innovative Technology for the Earth, RITE”
    (http://www.rite.or.jp/)
    14. G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size low cost photodetectors with excellent visible-ultraviolet sensitivity,” Appl. Phys. Lett. 64, 3422 (1994).
    15. A. K. Pandey and J. M. Nunzi, “Efficient flexible and thermally stable pentacene/C60 small molecule based organic solar cells,” App. Phys. Lett. 89,213506 (2006)
    16. K.M.Coakley and M.D.McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater.16, 4533 (2004)
    17. M. Hiramoto, H. Fujiwara, and M. Yokoyama, “p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments,” J. Appl. Phys. 72,15 (1992)
    18. J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. II. Device performance,” J. Appl. Phys. 98, 124903 (2005)
    19. G. Dennler, H.J. Prall, R. Koeppe, M. Egginger, R. Autengruber, and N. S. Sariciftci, “Enhanced spectral coverage in tandem organic solar cells,” Appl. Phys. Lett. 89, 073502 (2006)
    20. A. Hadipour, B. Boer, and P. W. M. Blom, “Organic Tandem and Multi-Junction Solar Cells,” Adv. Funct. Mater. 18,169-181 (2008)
    21. W. U. Huynh, J. J. Dittmer, N. Teclemariam, D. Milliron, and A. P. Alivisatos, K. W. J. Barnham, “Charge Transport in Hybrid Nanorod-Polymer Composite Photovoltaic Cells,” Phys. Rev. B 67, 115326 (2003).
    22. R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R. H. Friend, A. B. Holmes, J. Phys.:Condens. Matter. 6, 1379 (1994)
    23. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M.T. Rispens, L. Sanchez, J. C. Hummelen, and T Fromherz, “ The influence of materials work function on the open circuit voltage of plastic solar cells,” Thin Solid Film, 403-404,368 (2002)
    24. H. Kim, S-H. Jin, H. Suh, and K. Lee, “Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells,” In Organic Photovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE, Vol. 5215, (SPIE, Bellingham, WA, 2004), p. 111.
    25. H. Hoppe, and N. S. Sariciftci, “ Organic solar cells: An overview,” J. Mater. Res. 19, 1924 (2004)
    26. 太陽能工程–太陽電池篇 莊嘉琛 全華科技圖書股份有限公司 民86.
    27. C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, “Effect of LiF/metal electrodes on the performance of plastic solar cells,” Appl. Phys. Lett. 80, 1288 (2002)
    28. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)” J. Appl. Phys. 98, 043704 (2005)
    29. website of wikipedia (http://en.wikipedia.org/wiki/Solar_radiation)
    30. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Exciton
    diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction
    photovoltaic cell,” Appl. Phys. Lett. 68, 3120 (1996)
    31. Theander, A. Yartsev, D. Zigmantas, V. Sundstr□m, W. Mammo, M. R.
    Anderson, and O. Ingan□s, “Photoluminescence quenching at a polythiophene/C60 heterojunction,” Phys. Rev. B, 61, 12957 (2000).
    32. T. J. Savenije, J. M. Warman, and A.Goossens, “Visible light sensitisation of
    titanium dioxide using a phenylene vinylene polymer,” Chem. Phys. Lett. 287, 148 (1998)
    33. A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldman, U.
    Scherf, E. Harth, A. G□gel, and K. M□llen, “Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures,” Phys. Rev. B, 59, 15346 (1999)
    34. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger,
    “Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of
    Polyacetylene, (CH)x,” J. Chem. Soc., Chem. Commun. 578 (1977)
    35. K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,”
    Chem. Mater. 16, 4533 (2004).
    36. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, 401, 685 (1999).
    37. J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,” J.Org. Chem. 60, 532 (1995)
    38. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678 (2003)
    39. S. K. So1, W. K. Choi1, C. H. Cheng1, L. M. Leung, C. F. Kwong, Appl .Phys. A,68, 447 (1999)
    40. M.G. Mason, L.S. Hung, C.W. Tang, S. T. Lee, K. W. Wong, M. Wang, J. Appl. Phys., 86, 1688 (1999)
    41. G. Li, V. Shrotriya, J. Huang, Y. Yao, and Y. Yang, “High-efficiency solution
    processable polymer photovoltaic cells by self-organization of polymer blends,”
    Nature Mater. 4, 864, (2005).
    42. I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, “Molecular level alignment at organic semiconductor-metal interfaces,” Appl. Phys. Lett. 73, 662 (1998).
    43. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces,” Adv. Mater. 11, 605 (1999).
    44. I. G. Hill, A. J. Makinen, and Z. H. Kafafi, “Initial stages of metal/organic
    semiconductor interface formation,” J. Appl. Phys. 88, 889 (2000).
    45. N. F. Mott and D. Gurney. Electronic Processes in Ionic Crystals. Oxford,
    New York, 1940.
    46. J. Frenkel, “On pre-breakdown phenomena in insulators and electric semiconductors,” Phys. Rev. 54, 647 (1938).
    47. D. M. Pai, “Transient photoconductivity in poly(N-vinylcarbazole),” J. Chem. Phys.52, 2285 (1970).
    48. P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, “Electric-field and
    temperature dependence of the hole mobility in poly(p-phenylene vinylene),” Phys. Rev. B 55, 656 (1997).
    49. S. Karg, M. Meier, and W. Riess, “Light-emitting diodes based on
    poly-p-phenylene-vinylene: I. Charge-carrier injection and transport,” J. Appl. Phys.82, 1951 (1997).
    50. R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 (1928).
    51. S. R. Tseng, S. C. Lin, Hsin-Fei Meng, H. H. Liao, C. H. Yeh, H. C Lai, S. F. Horng, and C. S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88, 163501 (2006)
    52. J. S. Kim, R. H. Friend, I. G.rizzi, and J. H. Burroughes, “Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes,” Appl. Phys. Lett. 87,023506 (2005)
    53. A. M. Goodman, A. Rose, J. Appl. Phys. 42, 2823 (1971)
    54. R. Sokel, R. C. Hughes, J. Appl. Phys. 53, 7414 (1982)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE