研究生: |
莊啟宏 Chi-Hung Chuang |
---|---|
論文名稱: |
有機共軛高分子太陽電池之多層P-I-N結構設計與製程研究 Design, fabrication and investigation of multilayered p-i-n conjugated polymer based solar cells |
指導教授: |
洪勝富
Sheng-Fu Horng 孟心飛 Hsin-Fei Meng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 溶液製程 、緩衝層 、多層 、P-I-N結構 |
外文關鍵詞: | solution-process, buffer layer, multilayer, p-i-n structure |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機共軛高分子太陽電池具有製程簡易,可製作大面積,質量輕且可撓曲等優點,故能製作出低成本之太陽電池。然而,溶液互溶是在製作有機高分子太陽電池多層結構時最主要的問題之一。本研究分別以高溫烘烤、旋轉潤濕、及緩衝層技術解決此問題。結果發現以丙二醇當緩衝層之技術,能降低溶液互溶的問題,並提高多層結構元件的效率。
本研究以P3HT(poly(3-hexythiophene))及PCBM([6,6]-phenyl C61-butyric acid methyl ester)混合(blend)為主動層材料。改良原本的塊材異質接面(bulk heterojunction)結構。在P3HT:PCBM(I layer)比例1:1 wt的主動層之前,旋轉塗佈P3HT比例高的主動層(P layer)在陽極端,之後在陰極端加上P3HT比例少的主動層(N layer)。這種漸層分佈混合材料的結構,同時具有激子(exciton)分離區域面積較大的好處以及較佳的載子傳輸效率,能夠有效地提高太陽電池效率。
研究結果成功地製作出雙層結構元件以及P3HT-rich/blend/PCBM-rich之多層P-I-N結構,發現此結構能抑制操作電壓附近的暗電流,有效降低復合電流。從電路模型的參數萃取觀察到並聯電阻(shunt resistance, Rsh)的增加,使得操作電壓較高及FF的增加。能量轉換效率從2.46%提高到3.35%。
此緩衝層技術對製作多層結構或是串接(tandem)結構提供一個新的方法,其降低漏電流及復合電流的優點,將來可應用在製作大面積元件,而改善大面積化之後,更嚴重的漏電流及復合電流。
Polymer solar cells (PSCs) exhibit many advantages such as processing feasibility, capability of scaling up to large area, light weigh and flexibility. Thus we can fabricate cost-effective solar cells. However, mutual dissolution is one of the main problems for achieving PSCs with multilayer structure. In this work, we solve the problem by high temperature baking, spin-rinsing and buffer layer technique. The results show that this buffer layer technique with glycol would reduce the mutual dissolution problem and enhance the efficiency of multilayer structure devices.
We use blending of P3HT and PCBM as active material in our study. Our main research is to modify the conventional bulk heterojunction (BHJ) structure with buffer layer technique. We spin an extra P3HT-rich layer (P layer) near the anode before a normal layer with 1:1 wt of P3HT/PCBM (I layer) being deposited and insert an extra P3HT-poor layer (N layer) near the cathode. The gradually-distributed active layer allow for efficient exciton separation and better carrier extraction at the same time. Therefore, this leads to a better PCE of PSCs.
We successfully demonstrated bi-layer structure devices and multilayer p-i-n structure of P3HT-rich/blend/PCBM-rich in our study. The result shows that the dark current near operating voltage is suppressed. Besides, the recombination is significantly decreased. From the parameters extracted form the circuit model, an increased shunt resistance (Rsh) is observed. This increased Rsh lead to a higher operating voltage and thus an increased FF. The power conversion efficiency with P-I-N structured is enhanced from 2.46% to 3.35%!
The buffer layer technique can be used as a new approach for fabrication of multilayer PSCs or tandem cells. Besides, the P-I-N structure is benefiting for lowering the leakage current and recombination current. This has potential of being applied in fabrication of large-area PSCs which usually have more leakage path and higher recombination current.
1. R. A. Kerr, “Climate change - Scientists tell policymakers we're all warming the world,” Science, 315, 754 (2007)
2. D. M. Chapin, C. S. Fuller, and G.L. Pearson, “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys. 25, 676 (1954).
3. Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ
substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. : Res. Appl. 7, 471 (1999).
4. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671 (1976).
5. K. Sriprapa and P. Sichanugrist, “High efficiency amorphous/microcrystalline
silicon solar cell fabricated on metal substrate,” Photovoltaic Energy Conversion,
2003. Proceedings of 3rd World Conference on Volume 3, Page(s):2799 - 2800
(2003)
6. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hason,
and R. Noufi, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt.: Res. Appl. 7, 311 (1999).
7. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar Cell Efficiency
Tables (Version 31),” Prog. Photovolt. : Res. Appl. 16, 61-67 (2008)
8. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005)
9. K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics” Appl. Phys. Lett. 90, 163511 (2007)
10. C.W. Tang, “Two-layer organic photovoltaic cell,” App. Phys. Lett. 48, 183 (1986)
11. B. O’Regan and M. A. Gr□tzel, “A low cost, high efficiency solar cell based on
dye-sensitized colloidal TiO2 films,” Nature 353, 737 (1991).
12. L. Bin, W. Liduo, K. Bonan, W. Peng, and Q. Yong, “Review of recent progress in solid-state dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90, 549 (2006).
13. website of “Research Institute of Innovative Technology for the Earth, RITE”
(http://www.rite.or.jp/)
14. G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size low cost photodetectors with excellent visible-ultraviolet sensitivity,” Appl. Phys. Lett. 64, 3422 (1994).
15. A. K. Pandey and J. M. Nunzi, “Efficient flexible and thermally stable pentacene/C60 small molecule based organic solar cells,” App. Phys. Lett. 89,213506 (2006)
16. K.M.Coakley and M.D.McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater.16, 4533 (2004)
17. M. Hiramoto, H. Fujiwara, and M. Yokoyama, “p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments,” J. Appl. Phys. 72,15 (1992)
18. J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. II. Device performance,” J. Appl. Phys. 98, 124903 (2005)
19. G. Dennler, H.J. Prall, R. Koeppe, M. Egginger, R. Autengruber, and N. S. Sariciftci, “Enhanced spectral coverage in tandem organic solar cells,” Appl. Phys. Lett. 89, 073502 (2006)
20. A. Hadipour, B. Boer, and P. W. M. Blom, “Organic Tandem and Multi-Junction Solar Cells,” Adv. Funct. Mater. 18,169-181 (2008)
21. W. U. Huynh, J. J. Dittmer, N. Teclemariam, D. Milliron, and A. P. Alivisatos, K. W. J. Barnham, “Charge Transport in Hybrid Nanorod-Polymer Composite Photovoltaic Cells,” Phys. Rev. B 67, 115326 (2003).
22. R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R. H. Friend, A. B. Holmes, J. Phys.:Condens. Matter. 6, 1379 (1994)
23. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M.T. Rispens, L. Sanchez, J. C. Hummelen, and T Fromherz, “ The influence of materials work function on the open circuit voltage of plastic solar cells,” Thin Solid Film, 403-404,368 (2002)
24. H. Kim, S-H. Jin, H. Suh, and K. Lee, “Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells,” In Organic Photovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE, Vol. 5215, (SPIE, Bellingham, WA, 2004), p. 111.
25. H. Hoppe, and N. S. Sariciftci, “ Organic solar cells: An overview,” J. Mater. Res. 19, 1924 (2004)
26. 太陽能工程–太陽電池篇 莊嘉琛 全華科技圖書股份有限公司 民86.
27. C. J. Brabec, S. E. Shaheen, C. Winder, and N. S. Sariciftci, “Effect of LiF/metal electrodes on the performance of plastic solar cells,” Appl. Phys. Lett. 80, 1288 (2002)
28. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)” J. Appl. Phys. 98, 043704 (2005)
29. website of wikipedia (http://en.wikipedia.org/wiki/Solar_radiation)
30. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Exciton
diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction
photovoltaic cell,” Appl. Phys. Lett. 68, 3120 (1996)
31. Theander, A. Yartsev, D. Zigmantas, V. Sundstr□m, W. Mammo, M. R.
Anderson, and O. Ingan□s, “Photoluminescence quenching at a polythiophene/C60 heterojunction,” Phys. Rev. B, 61, 12957 (2000).
32. T. J. Savenije, J. M. Warman, and A.Goossens, “Visible light sensitisation of
titanium dioxide using a phenylene vinylene polymer,” Chem. Phys. Lett. 287, 148 (1998)
33. A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldman, U.
Scherf, E. Harth, A. G□gel, and K. M□llen, “Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures,” Phys. Rev. B, 59, 15346 (1999)
34. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger,
“Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of
Polyacetylene, (CH)x,” J. Chem. Soc., Chem. Commun. 578 (1977)
35. K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells,”
Chem. Mater. 16, 4533 (2004).
36. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, 401, 685 (1999).
37. J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,” J.Org. Chem. 60, 532 (1995)
38. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678 (2003)
39. S. K. So1, W. K. Choi1, C. H. Cheng1, L. M. Leung, C. F. Kwong, Appl .Phys. A,68, 447 (1999)
40. M.G. Mason, L.S. Hung, C.W. Tang, S. T. Lee, K. W. Wong, M. Wang, J. Appl. Phys., 86, 1688 (1999)
41. G. Li, V. Shrotriya, J. Huang, Y. Yao, and Y. Yang, “High-efficiency solution
processable polymer photovoltaic cells by self-organization of polymer blends,”
Nature Mater. 4, 864, (2005).
42. I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, “Molecular level alignment at organic semiconductor-metal interfaces,” Appl. Phys. Lett. 73, 662 (1998).
43. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces,” Adv. Mater. 11, 605 (1999).
44. I. G. Hill, A. J. Makinen, and Z. H. Kafafi, “Initial stages of metal/organic
semiconductor interface formation,” J. Appl. Phys. 88, 889 (2000).
45. N. F. Mott and D. Gurney. Electronic Processes in Ionic Crystals. Oxford,
New York, 1940.
46. J. Frenkel, “On pre-breakdown phenomena in insulators and electric semiconductors,” Phys. Rev. 54, 647 (1938).
47. D. M. Pai, “Transient photoconductivity in poly(N-vinylcarbazole),” J. Chem. Phys.52, 2285 (1970).
48. P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, “Electric-field and
temperature dependence of the hole mobility in poly(p-phenylene vinylene),” Phys. Rev. B 55, 656 (1997).
49. S. Karg, M. Meier, and W. Riess, “Light-emitting diodes based on
poly-p-phenylene-vinylene: I. Charge-carrier injection and transport,” J. Appl. Phys.82, 1951 (1997).
50. R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 (1928).
51. S. R. Tseng, S. C. Lin, Hsin-Fei Meng, H. H. Liao, C. H. Yeh, H. C Lai, S. F. Horng, and C. S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88, 163501 (2006)
52. J. S. Kim, R. H. Friend, I. G.rizzi, and J. H. Burroughes, “Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes,” Appl. Phys. Lett. 87,023506 (2005)
53. A. M. Goodman, A. Rose, J. Appl. Phys. 42, 2823 (1971)
54. R. Sokel, R. C. Hughes, J. Appl. Phys. 53, 7414 (1982)