簡易檢索 / 詳目顯示

研究生: 鄭傑仁
Cheng, Chieh-Jen
論文名稱: 寡糖-多面體矽氧烷嵌段寡聚物之 複雜晶格結構排列研究
Oligosaccharide-Polyhedral Oligomeric Silsesquioxanes Block Co-oligomers with Complex Lattice Packing Structures
指導教授: 陳信龍
Chen, Hsin-Lung
口試委員: 蘇群仁
Su, Chun-Jen
朱哲毅
Chu, Che-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 75
中文關鍵詞: 寡糖多面體矽氧烷嵌段寡聚物嵌段共聚物自組裝結構準晶
外文關鍵詞: Block co-oligomers, Frank–Kasper phases
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在雙嵌段共聚物和兩親物中發現Frank-Kasper(FK)和準晶(QC)相的存在推動了軟性準晶的發展。先前的研究表明,由多面體矽氧烷(POSS)組成的形狀兩親物和包含寡糖(Glcn,n表示葡萄糖單元的數量)組成的兩親物呈現出強烈的自組裝成FK相的趨勢。在本研究中,我們將POSS和寡糖基團結合合成了具有線性和非線性星形結構的寡糖-POSS嵌段寡聚物。這些嵌段寡聚物具有較低的糖組成,表明可能形成以寡糖為核心和POSS為外圍的微胞。我們的主要目標是探索在純共聚物和混合物系統中出現非經典球形相的可能性。
    我們的同步輻射小角X射線散射(SAXS)和廣角X射線散射(WAXS)結果顯示,Glcn-POSS BCOs形成了具有長程有序的柱狀微胞,以六角形或非經典晶格排列,具有中心矩形和斜柱狀對稱性。Glcn組成的柱狀核心形成柱狀而非球形的趨勢歸因於POSS基團的結晶,因為POSS晶體能夠在柱狀的長向上相對較長的距離生長。混合Glcn-POSS BCOs導致POSS熔點(TmPOSS)顯著下降,這表明不同鏈長的嵌段寡聚物分子中的Glcn和POSS區塊在微胞的核心和外圍混合緊密。TmPOSS的下降使得在TmPOSS以上可以形成有序球形相,其中在混合物中觀察到FK σ和A15相以及罕見的十方準晶(DQC)。
    儘管Glcn和POSS區塊都不能被視為柔性鏈,但Glcn核心和POSS外圍在填充晶格時仍然會經歷彈性自由能懲罰,以形成多面體形狀的微胞。解釋傳統線圈-線圈雙嵌段共聚物中FK相形成的熱力學論證應當適用於Glcn-POSS 嵌段寡聚物系統。在這個概念框架中,Glcn-POSS 嵌段寡聚物中FK相容易形成的原因歸因於核心與外圍的共同變形能力。整體彈性自由能懲罰與核心-外圍界面和微胞間接觸的表面自由能之間的相互作用控制著晶格的選擇,最終導致形成A15和σ相,具體取決於整體核心體積分數。這項研究深入了解通過微相分離和結晶形成複雜柱狀和球狀相的嵌段寡聚物的相行為及其控制機制,並凸顯了物理混合是一種豐富軟性準晶相結構的簡便方法。


    The discovery of Frank-Kasper (FK) and quasicrystal (QC) phases in block copolymers and amphiphiles has propelled the advancement of soft quasicrystals. Previous investigations have demonstrated the strong propensity of the shape amphiphiles composed of polyhedral oligomeric silsesquioxanes (POSS) moiety and the block co-oligomers (BCOs) comprising oligosaccharide (Glcn, with n denoting the number of glucose unit) blocks to self-assemble into FK phases. In this study, we combined POSS and oligosaccharide moieties to synthesize oligosaccharide-POSS BCOs with linear and nonlinear Glcn-(POSS)2 star architecture. These BCOs possess low sugar composition, showing the potential of forming micelles comprising a sugar core and POSS corona. Our primary objective is to explore the possibility of accessing non-canonical spherical phases in these systems, both in neat copolymers and their blends.
    Our synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) results revealed that the Glcn-POSS BCOs formed long-range ordered cylindrical micelles packed in hexagonal or the non-canonical lattices with centered rectangular and oblique symmetry. The tendency of the Glcn block to form cylindrical instead of spherical core was attributed to the crystallization of POSS moiety, as the POSS crystal was able to grow over a relatively long distance along the length direction of the cylinder. The binary blending of the Glcn-POSS BCOs led to a significant depression of the POSS melting point (TmPOSS), indicating that the Glcn¬ and the POSS blocks from the BCO molecules with different chain lengths mixed intimately in the core and corona of the micelle, respectively. The depression of TmPOSS allowed the ordered spherical phase to be accessed above TmPOSS, where FK  and A15 phase as well as decagonal quasicrystal (DQC) were observed in the blends.
    Although neither the Glcn nor POSS blocks of the Glcn-POSS BCO can be considered as flexible coils, the Glcn core and POSS corona still experience an elastic free energy penalty as the micelles deform into polyhedral shapes while packing in the lattice for efficient space filling. The thermodynamic argument explaining the formation of the FK phase in conventional coil-coil block copolymers should remain applicable to the Glcn-POSS BCO system. Within this conceptual framework, the easy formation of the FK phase in Glcn-POSS BCO is attributed to the core's strong tendency to deform cooperatively with the corona. The interplay between the overall elastic free energy penalty arising from deformation and the surface free energy of the core-corona interface and intermicellar contact governs the lattice selection, ultimately leading to the formation of A15 and σ phases depending on the overall core volume fraction. This study provides valuable insights into the phase behavior and its controlling mechanism of a unique class of BCO capable of forming complex cylindrical and spherical phases through microphase separation and crystallization. Moreover, it highlights the physical blending as a facile approach for enriching the phase structures in the domain of soft quasicrystal.

    Abstract..............................i 摘要..................................iii Contents..............................iv List of Figures.......................vi Chapter 1. Introduction...............1 Chapter 2. Experimental Section.......33 Chapter 3. Results & Discussion.......36 Chapter 4. Conclusion.................69 References............................71

    1. K. B. Blodgett, Journal of the American Chemical Society, 1935, 57(6), 1007-1022.
    2. P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, Journal of the American Chemical Society, 1991, 113(19), 7152-7167.
    3. G. M. Grason, Physics Reports, 2006, 433(1), 1-64.
    4. E. Helfand and Y. Tagami, The Journal of Chemical Physics, 1972, 56(7), 3592-3601.
    5. E. Helfand and A. M. Sapse, The Journal of Chemical Physics, 1975, 62(4), 1327-1331.
    6. E. Helfand, The Journal of Chemical Physics, 1975, 62(3), 999-1005.
    7. M. W. Matsen and F. S. Bates, Macromolecules, 1996, 29(4), 1091-1098.
    8. M. W. Matsen and M. Schick, Physical Review Letters, 1994, 72(16), 2660-2663.
    9. L.-T. Chen, C.-Y. Chen, and H.-L. Chen, Polymer, 2019, 169, 131-137.
    10. N.-W. Hsu, B. Nouri, L.-T. Chen, and H.-L. Chen, Macromolecules, 2020, 53(21), 9665-9675.
    11. F. C. Frank and J. S. Kasper, Acta Crystallographica, 1958, 11(3), 184-190.
    12. F. C. Frank and J. S. Kasper, Acta Crystallographica, 1959, 12(7), 483-499.
    13. H. Xie, J. Bai, H. Ren, S. Li, H. Pan, Y. Ren, and G. Qin, Nano Letters, 2021, 21(17), 7198-7205.
    14. M. Sluiter, A. Pasturel, and Y. Kawazoe, TMS Annual Meeting, 2005.
    15. S. Lee, M. J. Bluemle, and F. S. Bates, Science, 2010, 330(6002), 349-353.
    16. M. W. Bates, J. Lequieu, S. M. Barbon, R. M. Lewis, K. T. Delaney, A. Anastasaki, C. J. Hawker, G. H. Fredrickson, and C. M. Bates, Proceedings of the National Academy of Sciences, 2019, 116(27), 13194-13199.
    17. Z. Su, C.-H. Hsu, Z. Gong, X. Feng, J. Huang, R. Zhang, Y. Wang, J. Mao, C. Wesdemiotis, T. Li, S. Seifert, W. Zhang, T. Aida, M. Huang, and S. Z. D. Cheng, Nature Chemistry, 2019, 11(10), 899-905.
    18. K. Kim, M. W. Schulze, A. Arora, R. M. Lewis, M. A. Hillmyer, K. D. Dorfman, and F. S. Bates, Science, 2017, 356(6337), 520-523.
    19. A. Reddy, M. B. Buckley, A. Arora, F. S. Bates, K. D. Dorfman, and G. M. Grason, Proceedings of the National Academy of Sciences, 2018, 115(41), 10233-10238.
    20. M. Shimono and H. Onodera, Metals, 2021, 11(11), 1840.
    21. G. Bergman and D. P. Shoemaker, Acta Crystallographica, 1954, 7(12), 857-865.
    22. S. Lee, M. J. Bluemle, and F. S. Bates, Science, 2010, 330(6002), 349-353.
    23. H. Hartmann, F. Ebert, and O. Bretschneider, Zeitschrift für anorganische und allgemeine Chemie, 1931, 198(1), 116-140.
    24. R. Vargas, P. Mariani, A. Gulik, and V. Luzzati, Journal of Molecular Biology, 1992, 225(1), 137-145.
    25. M. Huang, C.-H. Hsu, J. Wang, S. Mei, X. Dong, Y. Li, M. Li, H. Liu, W. Zhang, T. Aida, W.-B. Zhang, K. Yue, and S. Z. D. Cheng, Science, 2015, 348(6233), 424-428.
    26. S. D. Hudson, H. T. Jung, V. Percec, W. D. Cho, G. Johansson, G. Ungar, and V. S. K. Balagurusamy, Science, 1997, 278(5337), 449-452.
    27. D. Levine and P. J. Steinhardt, Physical Review B, 1986, 34(2), 596-616.
    28. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Physical Review Letters, 1984, 53(20), 1951-1953.
    29. N. Wang, H. Chen, and K. H. Kuo, Physical Review Letters, 1987, 59(9), 1010-1013.
    30. X. D. Zou, K. K. Fung, and K. H. Kuo, Physical Review B, 1987, 35(9), 4526-4528.
    31. Q. B. Yang and W. D. Wei, Physical Review Letters, 1987, 58(10), 1020-1023.
    32. A.-P. Tsai, A. Inoue, and T. Masumoto, Materials transactions, JIM, 1989, 30(4), 300-304.
    33. K. K. Fung, C. Yang, Y. Zhou, J. Zhao, W. Zhan, and B. Shen, Physical review letters, 1986, 56(19), 2060.
    34. K. Hiraga, F. J. Lincoln, and W. Sun, Materials Transactions, JIM, 1991, 32(4), 308-314.
    35. X. Zeng, G. Ungar, Y. Liu, V. Percec, A. E. Dulcey, and J. K. Hobbs, Nature, 2004, 428(6979), 157-160.
    36. S. Fischer, A. Exner, K. Zielske, J. Perlich, S. Deloudi, W. Steurer, P. Lindner, and S. Förster, Proceedings of the National Academy of Sciences, 2011, 108(5), 1810-1814.
    37. K. Hayashida, T. Dotera, A. Takano, and Y. Matsushita, Physical Review Letters, 2007, 98(19), 195502.
    38. T. M. Gillard, S. Lee, and F. S. Bates, Proceedings of the National Academy of Sciences, 2016, 113(19), 5167-5172.
    39. Y. Liu, T. Liu, X.-Y. Yan, Q.-Y. Guo, H. Lei, Z. Huang, R. Zhang, Y. Wang, J. Wang, F. Liu, F.-G. Bian, E. W. Meijer, T. Aida, M. Huang, and S. Z. D. Cheng, Proceedings of the National Academy of Sciences, 2022, 119(3), e2115304119.
    40. M. W. Matsen and F. S. Bates, Journal of Polymer Science Part B: Polymer Physics, 1997, 35(6), 945-952.
    41. N. Xie, W. Li, F. Qiu, and A.-C. Shi, ACS Macro Letters, 2014, 3(9), 906-910.
    42. M. W. Schulze, R. M. Lewis, J. H. Lettow, R. J. Hickey, T. M. Gillard, M. A. Hillmyer, and F. S. Bates, Physical Review Letters, 2017, 118(20), 207801.
    43. M. W. Bates, S. M. Barbon, A. E. Levi, R. M. Lewis, III, H. K. Beech, K. M. Vonk, C. Zhang, G. H. Fredrickson, C. J. Hawker, and C. M. Bates, ACS Macro Letters, 2020, 9(3), 396-403.
    44. Y. Sun, R. Tan, Z. Ma, Z. Gan, G. Li, D. Zhou, Y. Shao, W.-B. Zhang, R. Zhang, and X.-H. Dong, ACS Central Science, 2020, 6(8), 1386-1393.
    45. A. B. Chang and F. S. Bates, ACS Nano, 2020, 14(9), 11463-11472.
    46. M. W. Matsen, Macromolecules, 1995, 28(17), 5765-5773.
    47. M. W. Matsen, Physical Review Letters, 1995, 74(21), 4225-4228.
    48. H. Takagi, R. Hashimoto, N. Igarashi, S. Kishimoto, and K. Yamamoto, Journal of Physics: Condensed Matter, 2017, 29(20), 204002.
    49. H. Takagi and K. Yamamoto, Macromolecules, 2019, 52(5), 2007-2014.
    50. A. J. Mueller, A. P. Lindsay, A. Jayaraman, T. P. Lodge, M. K. Mahanthappa, and F. S. Bates, ACS Macro Letters, 2020, 9(4), 576-582.
    51. M. W. Matsen and F. S. Bates, Macromolecules, 1995, 28(21), 7298-7300.
    52. Z. Wu, B. Li, Q. Jin, D. Ding, and A.-C. Shi, Macromolecules, 2011, 44(6), 1680-1694.
    53. F. Court and T. Hashimoto, Macromolecules, 2002, 35(7), 2566-2575.
    54. T. Hashimoto, K. Yamasaki, S. Koizumi, and H. Hasegawa, Macromolecules, 1993, 26(11), 2895-2904.
    55. T. Hashimoto, S. Koizumi, and H. Hasegawa, Macromolecules, 1994, 27(6), 1562-1570.
    56. S. Koizumi, H. Hasegawa, and T. Hashimoto, Macromolecules, 1994, 27(15), 4371-4381.
    57. F. Court and T. Hashimoto, Macromolecules, 2001, 34(8), 2536-2545.
    58. M. Liu, Y. Qiang, W. Li, F. Qiu, and A.-C. Shi, ACS Macro Letters, 2016, 5(10), 1167-1171.
    59. A. P. Lindsay, R. M. Lewis, III, B. Lee, A. J. Peterson, T. P. Lodge, and F. S. Bates, ACS Macro Letters, 2020, 9(2), 197-203.
    60. B. Nouri, C.-Y. Chen, Y.-S. Huang, B. W. Mansel, and H.-L. Chen, Macromolecules, 2021, 54(19), 9195-9203.
    61. B. Nouri, C.-Y. Chen, J.-M. Lin, and H.-L. Chen, Macromolecules, 2022, 55(21), 9820-9832.
    62. M. Reenders and G. ten Brinke, Macromolecules, 2002, 35(8), 3266-3280.
    63. N. Sary, L. Rubatat, C. Brochon, G. Hadziioannou, J. Ruokolainen, and R. Mezzenga, Macromolecules, 2007, 40(19), 6990-6997.
    64. I. Otsuka, T. Isono, C. Rochas, S. Halila, S. Fort, T. Satoh, T. Kakuchi, and R. Borsali, ACS Macro Letters, 2012, 1(12), 1379-1382.
    65. T. Isono, I. Otsuka, D. Suemasa, C. Rochas, T. Satoh, R. Borsali, and T. Kakuchi, Macromolecules, 2013, 46(22), 8932-8940.
    66. T. Isono, R. Komaki, C. Lee, N. Kawakami, B. J. Ree, K. Watanabe, K. Yoshida, H. Mamiya, T. Yamamoto, R. Borsali, K. Tajima, and T. Satoh, Communications Chemistry, 2020, 3(1), 135.
    67. K. K. Lachmayr, C. M. Wentz, and L. R. Sita, Angewandte Chemie International Edition, 2020, 59(4), 1521-1526.
    68. K. K. Lachmayr and L. R. Sita, Angewandte Chemie International Edition, 2020, 59(9), 3563-3567.
    69. C. M. Wentz, K. L. Lachmayr, E. H. R. Tsai, and L. R. Sita, Angewandte Chemie International Edition, 2023, n/a(n/a), e202302739.
    70. L.-L. Xiao, X. Zhou, K. Yue, and Z.-H. Guo, Polymers, 2021, 13(1), 110.
    71. L. Zheng, A. J. Waddon, R. J. Farris, and E. B. Coughlin, Macromolecules, 2002, 35(6), 2375-2379.
    72. X. Yu, K. Yue, I. F. Hsieh, Y. Li, X.-H. Dong, C. Liu, Y. Xin, H.-F. Wang, A.-C. Shi, G. R. Newkome, R.-M. Ho, E.-Q. Chen, W.-B. Zhang, and S. Z. D. Cheng, Proceedings of the National Academy of Sciences, 2013, 110(25), 10078-10083.
    73. K. Yue, C. Liu, M. Huang, J. Huang, Z. Zhou, K. Wu, H. Liu, Z. Lin, A.-C. Shi, W.-B. Zhang, and S. Z. D. Cheng, Macromolecules, 2017, 50(1), 303-314.
    74. M. Huang, K. Yue, J. Huang, C. Liu, Z. Zhou, J. Wang, K. Wu, W. Shan, A.-C. Shi, and S. Z. D. Cheng, ACS Nano, 2018, 12(2), 1868-1877.
    75. X. Feng, G. Liu, D. Guo, K. Lang, R. Zhang, J. Huang, Z. Su, Y. Li, M. Huang, T. Li, and S. Z. D. Cheng, ACS Macro Letters, 2019, 8(7), 875-881.
    76. Z. Su, J. Huang, W. Shan, X.-Y. Yan, R. Zhang, T. Liu, Y. Liu, Q.-Y. Guo, F. Bian, X. Miao, M. Huang, and Z. D. Cheng Stephen, CCS Chemistry, 2020, 3(5), 1434-1444.
    77. J. Huang, Z. Su, M. Huang, R. Zhang, J. Wang, X. Feng, R. Zhang, R. Zhang, W. Shan, X.-Y. Yan, Q.-Y. Guo, T. Liu, Y. Liu, Y. Cui, X. Li, A.-C. Shi, and S. Z. D. Cheng, Angewandte Chemie International Edition, 2020, 59(42), 18563-18571.
    78. J. Huang, R. Zhang, Y. Wang, Z. Su, X.-Y. Yan, Q.-Y. Guo, T. Liu, Y. Liu, H. Lei, M. Huang, W. Zhang, and S. Z. D. Cheng, Macromolecules, 2021, 54(17), 7777-7785.
    79. X.-Y. Yan, Q.-Y. Guo, X.-Y. Liu, Y. Wang, J. Wang, Z. Su, J. Huang, F. Bian, H. Lin, M. Huang, Z. Lin, T. Liu, Y. Liu, and S. Z. D. Cheng, Journal of the American Chemical Society, 2021, 143(51), 21613-21621.
    80. Y. Wang, J. Huang, X.-Y. Yan, H. Lei, X.-Y. Liu, Q.-Y. Guo, Y. Liu, T. Liu, M. Huang, F. Bian, Z. Su, and S. Z. D. Cheng, Angewandte Chemie International Edition, 2022, 61(19), e202200637.
    81. H. Lei, Y. Liu, T. Liu, Q.-Y. Guo, X.-Y. Yan, Y. Wang, W. Zhang, Z. Su, J. Huang, W. Xu, F.-G. Bian, M. Huang, and S. Z. D. Cheng, Angewandte Chemie International Edition, 2022, 61(28), e202203433.
    82. B. Nandan, J. Y. Hsu, and H. L. Chen, Journal of Macromolecular Science, Part C, 2006, 46(2), 143-172.
    83. S. Nojima, K. Kato, S. Yamamoto, and T. Ashida, Macromolecules, 1992, 25(8), 2237-2242.
    84. D. J. Quiram, R. A. Register, G. R. Marchand, and D. H. Adamson, Macromolecules, 1998, 31(15), 4891-4898.
    85. Y.-L. Loo, R. A. Register, and A. J. Ryan, Macromolecules, 2002, 35(6), 2365-2374.
    86. A. J. Waddon and E. B. Coughlin, Chemistry of Materials, 2003, 15(24), 4555-4561.
    87. S. Morimoto, H. Imoto, K. Kanaori, and K. Naka, Bulletin of the Chemical Society of Japan, 2018, 91(9), 1390-1396.
    88. M.-Y. Zhang, S. Zhou, H.-B. Pan, J. Ping, W. Zhang, X.-H. Fan, and Z. Shen, Chemical Communications, 2017, 53(62), 8679-8682.
    89. C.-M. Young, C. L. Chang, Y.-H. Chen, C.-Y. Chen, Y.-F. Chang, and H.-L. Chen, Soft Matter, 2021, 17(2), 397-409.
    90. C.-M. Young, Y.-F. Chang, Y.-H. Chen, C.-Y. Chen, and H.-L. Chen, Macromolecules, 2019, 52(23), 9177-9185.
    91. K. Chen, C.-Y. Chen, H.-L. Chen, R. Komaki, N. Kawakami, T. Isono, T. Satoh, D.-Y. Hung, and Y.-L. Liu, Macromolecules, 2023, 56(1), 28-39.

    QR CODE