簡易檢索 / 詳目顯示

研究生: 陳冠穎
Chen, Kuan-Ying
論文名稱: 具有積分邊界條件的奇異擾動橢圓方程
Singularly Perturbed Elliptic Equations with Integral Boundary Conditions
指導教授: 李俊璋
Lee, Chiun-Chang
口試委員: 吳昌鴻
Wu, Chang-Hong
張覺心
Chang, Chueh-Hsin
學位類別: 碩士
Master
系所名稱: 理學院 - 計算與建模科學研究所
Institute of Computational and Modeling Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 27
中文關鍵詞: Robin積分邊界條件固定點理論漸近展開
外文關鍵詞: Robin integral boundary condition, Fixed Point Theorem, Asymptotic Expansion
相關次數: 點閱:46下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討在有界域上的奇異擾動橢圓方程的解的唯一性,其中我們考慮具有積分項的Robin邊界條件。我們先建立一個對應的標準橢圓方程,以及映射來與原本的方程做連結。我們再利用固定點理論來得到解的存在性及唯一性。我們更進一步去研究方程的內部及邊界漸近行為。


    The main focus of this thesis is to investigate the uniqueness of solutions to singular perturbation elliptic equations on bounded domains, where we consider Robin boundary conditions with integral terms. First, we establish a corresponding standard elliptic equation and a mapping to connect the original equation. Then, we utilize fixed point theory to obtain the existence and uniqueness of solutions. We study the interior and boundary asymptotic behavior of the equation.

    摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Interior Estimation of uε,λ(r) and uε,λ ′(r) when N = 1 . . . . . 4 3 Asymptotic Expansion of u′ ε,λ(R) . . . . . . . . . . . . . . . . . . . 8 4 Proof of Theorem 1.1 and Theorem 1.2 . . . . . . . . . . . . . . . 11 5 The Case when N ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . 16 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    [1] B. Ahmad, B.S. Alghamdi, Approximation of solutions of the nonlinear Duffing equation involving both integral and non-integral forcing terms with separated boundary conditions, Comput. Phys. Comm. 179 (2008) 409–416.
    [2] R. Abreu, C. Morales-Rodrigo, A. Su ́arez, Some eigenvalue problems
    with non-local boundary conditions and applications, Commun. Pure Appl.Anal. 13 (2014) 2465–2474.
    [3] U. Ascher, R.D. Russell, Reformulation of boundary value problems in “standard” form, SIAM Rev. 23 (1981) 238–254.
    [4] C. Bandle, R.P. Sperb, Stakgold, I.: Diffusion and reaction with monotone kinetics, Nonlinear Anal. 8 (1984) 321–333.
    [5] A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Analysis 70 (2009) 364–371.
    [6] R.C. Brown, G.B. Green, A.M. Krall, Eigenfunction expansions under
    multipoint integral boundary conditions, Ann. Mat. Pura Appl. (4) 95 (1973) 231–243.
    [7] M.S. Berger, L.E. Fraenkel, Nonlinear desingularization in certain free boundary problems, Comm. Math. Phys. 77 (1980) 149–172.
    [8] R.C. Brown, A.M. Krall, Ordinary differential operators under Stieltjes boundary conditions, Trans. Amer. Math. Soc. 198 (1974) 73–92.
    [9] X. Chen, C.-C. Lee, M. Mizuno, Unified asymptotic analysis and nu-
    merical simulations of singularly perturbed linear differential equations under various nonlocal boundary effects (2024), Commun. Math. Sci. 22 (2024), no.2, 395–434.
    [10] X. Chen, C.-C. Lee, W. Yang, Asymptotics and computation for a class of Fredholm integro-differential equations, submitted.
    [11] M. Dehghan: A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications, Numerical Methods for Partial Differential Equations 22 (2006) 220–257.
    [12] A.M.A. El-Sayed, R. G. Ahmed, Solvability of a coupled system of functional integro-differential equations with infinite point and Riemann–Stieltjes integral conditions, Appl. Math. Comput. 370 (2020), 124918, 18 pp.
    [13] G. Esposito, Non-local boundary conditions in Euclidean quantum gravity,
    Class. Quantum Grav. 16 (1999) 1113–1126.
    [14] G. Esposito, E. Di Grezia, One-loop analysis with nonlocal boundary con-
    ditions, Phys. Rev. D 99 (2019) 065004.
    [15] M. Feng: Existence of symmetric positive solutions for a boundary value
    problem with integral boundary conditions, Applied Mathematics Letters
    (2011) 1419–1427.
    [16] A. Friedman: Monotonic decay of solutions of parabolic equations with non-local boundary conditions, Quart. Appl. Math. 44 (1986) 401–407.
    [17] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, New York, Heidelberg, and Berlin (1983).
    [18] F.A. Howes, Singularly perturbed semilinear elliptic boundary value problems, Comm. Partial Differential Equations 4 (1979) 1–39.
    [19] V.A. Il’in, E.I. Moiseev, Nonlocal boundary value problem of the first kind for a Sturm–Liouville operator in its differential and finite difference aspects, Differ. Equ. 23 (1987) 803–810.
    [20] V.A. Il’in, E.I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm–Liouville operator, Differ. Equ. 23 (1987) 979–987.
    [21] V. Karl, D. Wachsmuth, An augmented Lagrange method for elliptic state constrained optimal control problems, Comput. Optim. Appl. 69 (2018) 857—880.
    [22] F. Kruse, M. Ulbrich, A self-concordant interior point approach for optimal control with state constraints, SIAM J. Optim. 25 (2015) 770–806.
    [23] C.-C. Lee, Uniqueness and asymptotics of singularly perturbed equations involving implicit boundary conditions, Rev. R. Acad. Cienc. Exactas F ́ıs. Nat. Ser. A Mat. RACSAM 117 (2023), Paper No. 51, 18 pages.
    [24] C.-C. Lee, An existence theorem for semilinear problems with multi-point and integral boundary conditions, submitted (2023).
    [25] C.-C. Lee, M. Mizuno, S.-H. Moon, On the uniqueness of linear
    convection–diffusion equations with integral boundary conditions, C. R. Math. Acad. Sci. Paris 361 (2023) 191–206.
    [26] S.K. Ntouyas, Nonlocal initial and boundary value problems: a survey. In Handbook of differential equations: ordinary differential equations. Vol. 2(2006), 461–557. North-Holland.
    [27] R.E. O’Malley Jr., Topics in singular perturbations, Adv. Math. 2 (1968)365–470.
    [28] R.E. O’Malley Jr., Singular Perturbation Methods for Ordinary Differential Equations, Springer Verlag, 1991.
    [29] C.V. Pao, Dynamics of reaction-diffusion equations with nonlocal boundary conditions, Quart. Appl. Math. 53 (1995) 173–186.
    [30] C.V. Pao, Numerical solutions of reaction–diffusion equations with nonlocal boundary conditions, J. Comput. Appl. Math 136 (2001) 227–243.
    [31] B. Pelloni , D.A. Smith, Nonlocal and multipoint boundary value problems for linear evolution equations, Stud. Appl. Math. 141 (2018), 46–88.
    [32] C. Rama, V. Ekaterina, Integro-differential equations for option prices in exponential Levy models, Finan. Stoch. 9 (2005) 299–325.
    [33] P Souplet, Blow-up in nonlocal reaction–diffusion equations, SIAM J. Math. Anal., 29 (1998) 1301–1334.
    [34] R. Sperb, Optimal bounds in semilinear elliptic problems with nonlinear boundary conditions, Z. Angew. Math. Phys. 44 (1993) 639–653.
    [35] A. Saadatmandi, Mehdi Dehghan: Numerical solution of the one-
    dimensional wave equation with an integral condition, Numerical Methods for Partial Differential Equations 23 (2007) 282–292.
    [36] F. Tr ̈oltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Volume 112 of Graduate Studies in Mathematics, American Mathematical Society, Providence (2010).
    [37] L. Wu, M. Ni, H. Lu, Internal layer solution of singularly perturbed optimal control problem with integral boundary condition, Qualitative Theory of Dynamical Systems 17 (2018) 49–66.
    [38] A.M. Wazwaz, Fredholm Integro-Differential Equations. In: Linear and Non-linear Integral Equations. Springer, Berlin, Heidelberg, (2011).
    [39] J.R.L. Webb, M. Zima, Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems, Non. Analysis 71 (2009) 1369–1378.
    [40] A.G. Werschulz, Complexity and tractability for a class of elliptic partial integro-differential equations, J. Complex. 69 (2022), 101603
    [41] A.G. Werschulz, Complexity for a class of elliptic ordinary integro-differential equations, J. Complex. 81 (2024), 101820

    QR CODE