簡易檢索 / 詳目顯示

研究生: 林祐祺
Lin, Yu-Chi
論文名稱: 大面積化有機太陽能電池的製程開發與結構設計
Process Development and Structural Design for Large-Area Organic Solar Cells
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 80
中文關鍵詞: 有機太陽能電池透明電極柵狀電極
外文關鍵詞: organic solar cell, transparent electrode, metal grid
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於有機太陽能電池具有成本低廉、製程簡單、質輕易於攜帶,且具備可撓性…等優點,所以其研究與應用越來越廣泛,此外,藉由刮刀或噴墨印刷等技術更可以使元件朝向大面積化發展,使得有機太陽能電池在未來具有很大的發展潛力。但目前的研究文獻幾乎都是以小面積的有機太陽電池為研究對象,其面積尺寸大約為幾個mm2,很少有文獻是針對大面積的元件做探討。
      而本論文研究主要方向是大面積有機太陽電池的製程開發與結構設計,重點是針對PEDOT透明電極的製程研究與柵狀電極形狀的探討。首先,利用滴定成膜的方式先在小面積元件上製作PEDOT透明電極,並透過一系列的實驗作參數最佳化,而目前最高效率可以達到1.8%左右。接著將之應用到大面積元件上並搭配ㄑ字形柵狀電極,分析不同寬度和角度的柵狀電極對有機太陽電池的特性參數影響,除了實驗數據之外,也有數值模擬結果可以驗證。
      透過本論文的研究,以期能把透明電極之製作技術應用到大面積上,降低電極的遮蔽率,增加入射光面積,並利用ㄑ字形柵狀電極結構之設計,有效將電場均勻分布於元件內,以提升Jsc和FF而進一步增加元件效率,藉此使有機太陽電池在未來更具有競爭力。


      Recently, much more attention has been put into organic solar cells due to possibilities of low materials cost, easy solution processing, light weight, and flexibility. Furthermore, the potential of scaling up to large area make it a promising alternative to inorganic solar cell. Most of the promises of the technology have been based on successful laboratory experiments on very small single devices(typically a few mm2), and very few reports on the experimental production of large area solar cells are found in the literature.
      In this research, the main directions focus on the PEDOT transparent electrode and metal grid patterns. First, PEDOT solution was drop-coated on small devices. Through a series of experiments for parameters optimization, the power conversion efficiency (PCE) of the device already reaches to 1.8%. Then metal grid with ㄑ shaped were applied to large area devices, analysis of different width and angle of metal grid on the characteristic parameters of organic solar cells. In addition to the experimental data, but also with numerical simulation results can be verified.
      Through this research, it is expected to investigate the application of transparent electrode which can lower shield ratio and increase the exposure area of light, and to use metal grid patterns with ㄑ shaped structure which can effective distribute the electric field uniformity in the devices to enhance the Jsc and FF and to further increase the device efficiency. Let organic solar cells be more competitive in the future.

    摘要 i 目錄 viii 表目錄 x 圖目錄 xi 第一章 緒論 1 1.1 研究背景 1 1.1.1 前言 1 1.1.2 太陽能電池產業發展 1 1.1.3 有機太陽電池的歷史發展 3 1.1.4 有機太陽電池的結構演進 5 1.2 研究動機 8 1.2.1 有機高分子太陽能電池的優點 8 1.2.2 P3HT與PCBM混合的有機高分子太陽電池 9 1.2.3 為何發展透明電極與柵狀電極 9 1.3 文獻回顧 11 1.3.1 反向結構太陽電池 11 1.3.2 以PEDOT當陽極材料 13 1.3.3 柵狀電極 14 1.4 論文架構 15 第二章 實驗原理 16 2.1 太陽能電池簡介 16 2.1.1 太陽能電池基本原理 16 2.1.2 太陽能電池基本參數介紹 19 2.1.3 太陽能電池操作原理 23 2.1.4 有機太陽電池能帶理論 26 2.2 有機太陽電池材料簡介與材料選擇 27 2.2.1 共軛高分子材料簡介 27 2.2.2 電洞傳輸層和電子傳輸層材料簡介 28 2.2.3 電極材料簡介 30 2.2.4 溶劑的特性與選擇 31 2.3 本論文研究之元件結構與能帶圖 31 第三章 實驗方法與流程 33 3.1 元件製作流程 33 3.2 ITO玻璃基板圖樣化 33 3.2.1 基板切割與清洗 33 3.2.2 乾式光阻的黏貼 34 3.2.3 光阻曝光 34 3.2.4 顯影 34 3.2.5 蝕刻 35 3.3 圖樣化ITO玻璃基板清洗 35 3.4 高分子層成膜方式 36 3.4.1 ITO玻璃基板親水性 36 3.4.2 電子傳輸層PBD的成膜方式 36 3.4.3 主動層P3HT:PCBM的成膜方式 37 3.4.4 透明電極PEDOT的成膜方式 38 3.4.5 柵狀電極蒸鍍 38 3.5 封裝 39 3.6 量測 40 第四章 實驗結果與討論 41 4.1 以PEDOT為透明電極之反結構元件 41 4.1.1 改善PEDOT成膜問題與導電度 41 4.1.2 PEDOT成膜方式比較 45 4.2 滴定製程參數建立 48 4.2.1 成膜轉速對元件特性影響 48 4.2.2 加熱時間對元件特性影響 50 4.2.3 利用銀金屬薄膜增加PEDOT的導電特性 53 4.2.4 滴定成膜方式總結 55 4.3 銀柵狀電極角度和寬度對元件特性影響 57 4.3.1 解決效率不穩定問題 57 4.3.2 銀柵狀電極角度與寬度對元件影響 62 4.3.3 銀柵狀電極總結 75 第五章 實驗總結與未來發展 76 參考文獻 78

    [1] D. M. Chapin, C. S. Fuller, and G.L. Pearson, “A New Silicon pn Junction photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys. 25,676 (1954).
    [2] Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovolt. : Res. Appl. 7, 471 (1999).
    [3] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183 (1986)
    [4] B. O’Regan and M. A. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737 (1991).
    [5] G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size low cost photodetectors with excellent visible-ultraviolet sensitivity,” Appl. Phys. Lett. 64, 3422 (1994).
    [6] K.M.Coakley and M.D.McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater.16, 4533 (2004)
    [7] Harald Hoppe, and Niyazi Serdar Sariciftci,“Organic solar cell: An review,”J. Mater. Res., Vol. 19, No. 7, Jul 2004.
    [8] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992).
    [9] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
    [10] Kyungkon Kim, Jiwen Liu, Manoj A. G. Namboothiry, and David L. Carroll,“Role of donor and acceptor nanodomains in 6% efficient thermally annealed
    polymer photovoltaic,”Appl. Phys. Lett. 90, 163511 (2007).
    [11] G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang, “Efficient inverted solar
    cells,” Appl. Phys. Lett. 88, 253503 (2006).
    [12] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted bilk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer,” Appl. Phys. Lett. 89, 143517 (2006).
    [13] Hua-Hsien Liau, Li-Min Chen, Zheng Xu, Gang Li, and Yang Yang,“Highly
    efficient inverted polymer solar cell by low temperature annealing of Cs2CO3
    interlayer,” Appl. Phys. Lett. 92, 173303 (2008).
    [14] Yee-Fun Lim, Sungsoo Lee, David J. Herman, Matthew T. Lloyd, John E.
    Anthony,and George G. Malliaras, “Spray-deposited
    poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) top electrode for
    organic solar cells, ”Appl. Phys. Lett. 93, 193301 (2008).
    [15] Alexander Colsmann, Florian Stenzel, Gerhard Balthasar, Hung Do, Uli
    Lemmer, “Plasma patterning of
    Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) anodes for efficient
    polymer solar cells,” Thin Solid Films 517, 1750–1752(2009).
    [16] A. R. Burgers, “How to Design Optimal Metallization Patterns for Solar Cells,”
    Prog. Photovolt: Res. Appl. 7, 457–461 (1999).
    [17] P. Morvillo, E. Bobeico, F. Formisano, F. Roca, “Influence of metal grid patterns on the performance of silicon solar cells at different illumination levels,” Materials Science and Engineering B 159–160, 318–321(2009).
    [18] R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R.H. Friend, A. B. Holmes, J. Phys.:Condens. Matter. 6, 1379(1994).
    [19] C.J. Brabec, A. Cravion, D. Meissner, N.S. Sariciftci, M.T. Rispens, L. Sanchez, J.C. Hummelen, and T Fromherz,“The influence of materials work function on the open circuit voltage of plastic solar cells, ” Thin solid Film, 403–404,368(2001).
    [20] H. Kim, S-H. Jin, H. Suh, and K. Lee,“Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells,” In Organic Photovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceeding of the SPIE, Vol.5215,(SPIE, Bellingham, WA,2004) ,p.111.
    [21] H. Hoppe, and N. S. Sariciftci, “ Organic solar cells: An overview,” J. Mater.
    Res. 19, 1924 (2004).
    [22] S. K. So1, W. K. Choi1, C. H. Cheng1, L. M. Leung, C. F. Kwong, Appl .Phys.
    A,68, 447 (1999).
    [23] M.G. Mason, L.S. Hung, C.W. Tang, S. T. Lee, K. W. Wong, M. Wang, J. Appl.
    Phys., 86, 1688 (1999).
    [24] G. Li, V. Shrotriya, J. Huang, Y. Yao, and Y. Yang, “High-efficiency solution
    processable polymer photovoltaic cells by self-organization of polymer blends,”
    Nature Mater. 4, 864, (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE