研究生: |
林建宏 Chien-Hung Lin |
---|---|
論文名稱: |
Ca / CuPc介面的電子結構量測 A Photoemission Study of Electronic Structures at the calcium / copper phthalocyanine Interface |
指導教授: |
黃振昌
Jenn-Chang Hwang 皮敦文 Tun-Wen Pi |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 有機太陽能電池 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本次實驗為利用同步幅射光對不同厚度的Ca在CuPc表面上進行光電子能譜的量測,為求表面的敏感性與光能量的因素主要分成兩部份,分別為低能量的價帶能譜與高能量的核層電子能譜,由價帶能譜可以得到介面的電子結構變化,而核層能譜則可解析介面間的化學反應,透過這兩種資訊我們可以了解Ca/CuPc介面的交互作用。
由實驗的觀察可以將其間的交互作用分成四個階段,蒸鍍時間小於15 s:Ca原子提供電子給CuPc使其HOMO與cutoff往高束縛能方向位移。蒸鍍時間小於100 s:HOMO不再位移,Ca與CuPc介面於CuPc能隙之間產生新的波峰且隨Ca厚度增加而增強,並從各核層能譜中觀察到得電子的現象。蒸鍍時間小於500 s:新波峰不再成長,且價帶能譜無明顯變化,Cu原子持續獲得電子。蒸鍍時間大於500 s:Ca鍍厚到金屬態費米能階出現。
In this project, we have utilized synchrotron radiation photoemission to investigate how the organic semiconductor CuPc interacts with Ca at different thicknesses. According to our observations, the interaction at the Ca/CuPc interface can be divided into four stages. In stage I, where the evaporation time is less than 15 s, the Ca atoms transfer some charge to CuPc, making both the HOMO and the cutoff shift to high binding energies. In stage II, where the evaporation time is less then 100 s, a new peak appears inside the CuPc gap, while the HOMO and the cutoff remain unshifted. The new peak increases in intensity with increasing Ca thickness. As to the N 1s and C 1s core-level spectra, they become broadened. Furthermore, a new Cu 3p core appears at low binding energy, shifted away from the pristine 3p core by 1.6 eV. In stage III, where the evaporation time is less than 500 s, the strength of the new valence peak does not increase, and the whole valence band spectra change insignificantly. However, the new Cu 3p core increases in intensity at the expense of the original Cu 3p core. In the final stage, where the evaporation time is greater 500 s, the metallic Ca appears.
1. 工業技術研究院(http://college.itri.org.tw/SeminarView.aspx?no=23060299&msgno=300926).
2. 劉佩華、田禾,”有機太陽能電池材料近期進展(上)”,上海華東理工大學精細化工研究所(2002).
3. G. A. Chamberlain, Solar Cells 8, 47 (1983).
4. D. Wo¨hrle and D. Meissner, Adv. Mater. 3, 129 (1991).
5. C.J. Brabec, N.S. Sariciftci, and J.C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).
6. J. Nelson, Curr. Opin. Solid State Mater. Sci. 6, 87 (2002).
7. J-M. Nunzi, C. R. Physique 3, 523 (2002).
8. P. Peumans, A. Yakimov, and S.R. Forrest, J. Appl. Phys. 93, 3693 (2003).
9. C. Winder and N.S. Sariciftci, J. Mater. Chem. 14, 1077 (2004).
10. A. Goetzberger, C. Hebling, and H-W. Schock, Mater. Sci. Eng. R 40, 1 (2003).
11. H. Hoppe and N. S. Sariciftci. J. Mater. Res. 19, 1924 (2004).
12. S.E. Shaheen, R. Radspinner, N. Peyghambarian, and G.E. Jabbour, Appl. Phys. Lett. 79, 2996 (2001).
13. M. Hiramoto, H. Fujiwara, and M. Yokoyama, Appl. Phys. Lett. 58, 1062 (1991).
14. W. Geens, T. Aernouts, J. Poortmans, and G. Hadziioannou, Thin Solid Films 403, 438 (2002).
15. B. Maennig, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski, A. Werner, F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeiffer, H. Hoppe, D. Meissner, S. Sariciftci, I. Riedel, V. Dyakonov, and J. Parisi, Appl. Phys. A 79, 1 (2004).
16. M. Pfeiffer, A. Beyer, B. Plo¨nnigs, A. Nollau, T. Fritz, K. Leo, D. Schlettwein, S. Hiller, and D. Wo¨hrle, Sol. Energy Mater. Sol. Cells 63, 83 (2000).
17. T. Tsuzuki, Y. Shirota, J. Rostalski, and D. Meissner, Sol. Energy Mater. Sol. Cells 61, 1 (2000).
18. C.D. Dimitrakopoulos and D.J. Mascaro, IBM J. Res. Dev. 45, 11 (2001).
19. H. Spanggaard, F.C. KrebsSol. Energy Mater. Sol. Cells, 83, 125 (2004).
20. C.W. Tang, Appl. Phys Lett. 48, 183 (1986).
21. M. K.Engel, Report Kawamura Inst. Chem. Res. 8,11(1997).
22. M. Thelakkat, C. Schmitz, and H.-W. Schmidt, Adv. Mater. 14, 577 (2002).
23. J. C. Cnoboy, E. J. C. Olson,D. M. Adams, J. Kerimo, A. Zaban, B. A. Gregg, and P. F. Barbara, J. Phys. Chem. B 102,4516 (1998).
24. D. M. Adams, J. Kerimo, E. J. C. Olson, A. Zaban, B. A. Gregg, and P. F. Barbara, J. Am. Chem. Soc. 199,10608 (1997)
25. S. Baranton, C. Coutanceau, C. Roux, F.Hahn, and J.-M. Leger, J. Elevtronal. Chem. 577, 223 (2005).
26. A. R. Harutyunyan, A. A. Kuznetsov, O. A. Kuznetsov, and O.L. Kaliya, J. Magn. Magn. Mater. 194, 16 (1999)
27. A. A. Kuznetsov, V. I. Filippov, R. N. Alyautdin, N. L. Torshina, and O. A. Kuznetsov, J. Magn. Magn. Mater. 225, 95 (2001).
28. N. Papageorgiou, Y. Ferro, E. Salomon, A. Allouche, J. M. Layet, L. Giovanelli, and G. Le Lay, Phys. Rev. B.68, 235105 (2003).
29. J. S. John Ahlund, Lisbeth Kjeldgaard, Simon Berner, Nils Martensson, Carla Puglia, Barbara Brena, Mats Nyberg, and Yi Luo, J. Chem. Phys. 125, 034709 (2006).
30. T. Schwieger, H. Peisert, M. S. Golden, M. Knupfer, and J. Fink, Phys. Rev. B 66, 155207 (2002).
31. J.X. Tang, C.S. Lee , and S.T. Lee, Appl. Surf. Sci. 252, 3948 (2006).
32. O. V. Molodtsova, V. M. Zhilin, D. V. Vyalikh, V. Yu. Aristov, and M. Knupfer, J. Appl. Phys. 98, 093702 (2005).
33. Huanjun Ding, and Yongli Gao, Appl. Surf. Sci. 252, 3943 (2006).
34. 劉哲宏, ”Ca / Alq3介面的同步幅射光電子基發研究” 國立清華大學材料科學工程研究所碩士論文, (2004).
35. 汪建明主編, 材料分析Material Analysis, 中國材料科學學會出版, 1998年10月.
36. C. R. Brundle, Sur. Sci. 48, 99 (1975).
37. 呂登復編著, 實用真空技術, 國興出版社, 1998年4月.
38. Li Yan, N. J. Watkins, S. Zorba, Yongli Gao, and C. W. Tang, Appl. Phys. Lett. 79 4148 (2001).
39. T. Schwieger, M. Knupfer, W. Gao, and A. Kahn, Appl. Phys. Lett. 83, 500 (2003).
40. M. Probst and R. Haight, Appl. Phys. Lett. 70, 1420 (1997).
41. Tun-Wen Pi, Che-Hung Liu and J. Hwang, J. Appl. Phys. 99, 123712 (2006).
42. M. F. Craiun, S. Rogge, M.-J. L. den Boer, S. Margadonna, K. Prassides, Y. Iwasa, and A. F. Morpurgo, Adv. Mater. 18, 320 (2006).