簡易檢索 / 詳目顯示

研究生: 王蔚鴻
Wang, Wei-Hung
論文名稱: 多層膜巨磁阻中鐵磁層材料之影響及其於感測器之應用
Giant magnetoresistance multilayers: effects of ferromagnetic materials and applications in magnetic sensors
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 宋震國
張禎元
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 55
中文關鍵詞: 巨磁阻磁性多層膜磁感測器
外文關鍵詞: giant magnetoresistance, magnetic multilayers, magnetic sensor
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從巨磁阻(giant magnetoresistance,GMR)效應發現之後,由於具有電阻變化大、高靈敏度、磁場操作範圍廣等優點,人們很快地將其應用在不同領域之中,包括磁紀錄媒體讀頭以及磁性感測器。在磁性與非磁性金屬多層膜系統中,在適當的非磁性層厚度下,相鄰鐵磁層的磁矩會藉由反鐵磁耦合而形成反平行排列,若施加磁場則可使其轉換為平行排列,此相鄰磁性材料磁化方向相反情況下的電阻值,明顯大於磁化方向相同時的電阻值,這種可透過磁場控制轉換高低阻態的現象,即被稱為巨磁阻效應。巨磁阻元件構造簡單、耐震性強,有較佳電阻溫度係數,對操作條件誤差以及環境的容忍度高,較不受粉塵、油漬、高濕度等汙染影響,因此對於汽車產業或工業製造等惡劣使用環境是良好的選擇;而由於巨磁阻元件易與一般半導體製程整合、可微小化,在消費性電子或生技醫藥產業亦極具應用潛力。
    本研究希望透過不同材料結構與製程方法的改良,取得高穩定性、高阻值比的巨磁阻元件。我們以直流磁控濺鍍方法製備鐵磁(Co、CoFe、NiFe、NiFeCo)/非鐵磁(Cu)多層膜,找出具有最高巨磁阻及反鐵磁耦合的膜厚;引入底層緩衝層,藉由調整粗糙度,降低與自旋無關的電子散射,來大幅提升磁阻值比。藉由不同鐵磁層材料的巨磁阻多層膜系統,觀察這些鐵磁材料對磁阻以及靈敏度的影響,我們發現CoFe/Cu多層膜可以達到最高的磁阻,而以NiFeCo/Cu多層膜則是具有較好的感測靈敏度。我們亦鍍製了結合CoFe和NiFe兩種鐵磁材料的膜層結構,結合它們高磁阻與高靈敏度的特性。為驗證其作為磁感測器的潛力,我們分別使用剝離和蝕刻製程製備NiFeCo/Cu的多層膜巨磁阻元件,確認我們的元件在製程中並不會犧牲磁阻值後,藉由一磁鐵陣列驗證元件的感測能力。本實驗結果可幫助未來開發高精度且高靈敏度的巨磁阻感測器,並期望應用於儀器量測、汽車工業、自動機械、座標量測、半導體業、生醫感測、消費電子等領域。


    Since the discovery of giant magnetoresistance (GMR) effect, it has been applied to many fields, including read heads of magnetic recording media and magnetic sensors, for its large resistance change, high sensitivity and wide operating range. If we carefully select the thickness of the non-magnetic layers in a ferromagnetic and non-magnetic metallic multilayer system, the magnetizations of neighboring ferromagnetic layers will align in antiparallel directions through antiferromagnetic coupling. Applying a magnetic field can turn them into parallel arrangement. The resistance of the system is much higher at antiparallel state than that at parallel state. Therefore, the system can transit between high and low resistance states by an external magnetic field. This phenomenon is called GMR effect. GMR devices have relatively simple structure, high resistance to shock, good temperature coefficient of electrical resistance, high tolerance of operating error and environment and are less affected by harsh conditions such as dust, oil, high humidity, so they are a good choice for using under nasty environments, such as automobile industry and industrial manufacturing. Since GMR devices can easily be integrated with semiconductor manufacturing processes, they also have great potential to be applied in consumer electronics and biotechnological industry.
    This study is aimed to obtain a GMR device with high stability and high magnetoresistance (MR) ratio from different materials and structures and improvements on fabrication processes. We sputtered ferromagnetic (Co, CoFe, NiFe, NiFeCo) /non-magnetic (Cu) multilayers and selected the thicknesses with the highest MR ratio and antiferromagnetic coupling, and we observed the effects of ferromagnetic materials on MR ratio and sensitivity. A buffer layer was introduced under the multilayers to adjust the roughness and lower the spin-independent scattering to raise MR ratio. We found that Co/Cu multilayers had the highest MR ratio an NiFeCo/Cu multilayers had the best sensitivity among the systems we investigated. We also designed layer structures with CoFe and NiFe in hopes of combing their high MR ratio and high sensitivity respectively. We fabricated NiFeCo/Cu GMR devices by lift-off and etching processes respectively to demonstrate their potentials of magnetic sensors. After verifying that the MR ratio was maintained through the fabrication processes, we showed the sensing capabilities of the devices with a patterned magnet array. The results are helpful for developing highly precise and sensitive GMR sensors, which are expected to be applied in plenty fields, e.g. instrumental measurements, automobile industries, automatic robotics, semiconductor industries, biomedical sensing and consumer electronics.

    Abstract i 摘要 ii 誌謝 iii Content iv List of Figures vi List of tables viii Chapter 1. Introduction 1 Chapter 2. Background 3 2.1 Giant magnetoresistance 3 2.1.1 Spin-dependent scattering 3 2.1.2 GMR structures 5 2.1.3 Interlayer exchange coupling 6 2.1.4 Ferromagnetic materials 8 2.1.5 Buffer layers 9 Chapter 3. Experiment and Analysis Technique 10 3.1 Sample preparation 10 3.1.1 Ultra-high vacuum magnetron sputtering system 10 3.1.2 Photolithography 11 3.1.3 Inductively coupled plasma reactive ion etching, ICPRIE 12 3.2 Analysis technique 13 3.2.1 Vibrating sample magnetometer, VSM 13 3.2.2 Four-point probes 14 3.2.3 Atomic force microscope, AFM 14 Chapter 4. Results and Discussions 16 4.1 Co/Cu multilayer system 16 4.1.1 Sputtering condition 16 4.1.2 Buffer layer 21 4.1.3 MR at small fields 21 4.2 Other multilayer systems 22 4.2.1 Co90Fe10/Cu multilayers 22 4.2.2 Ni80Fe20/Cu multilayers 24 4.2.3 Ni80Fe20/Cu/Co90Fe10/Cu multilayers 26 4.2.4 Co90Fe10 insertion at Ni80Fe20/Cu interfaces 27 4.2.5 Ni65Fe15Co20/Cu multilayers 29 4.2.6 Summary 30 4.3 Patterned devices 31 4.3.1 Lift-off method 31 4.3.2 Etching method 37 4.4 Patterned magnet array 43 4.4.1 Different distance 43 Chapter 5. Summary 49 References 51

    1. Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J. (1988). Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 61(21), 2472-2475. doi: 10.1103/PhysRevLett.61.2472
    2. Binasch, G., Grünberg, P., Saurenbach, F., & Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B, 39(7), 4828-4830. doi: 10.1103/PhysRevB.39.4828
    3. Baselt, D. R., Lee, G. U., Natesan, M., Metzger, S. W., Sheehan, P. E., & Colton, R. J. (1998). A biosensor based on magnetoresistance technology. Biosensors and Bioelectronics, 13(7–8), 731-739. doi: 10.1016/S0956-5663(98)00037-2
    4. Caruso, M. J., Bratland, T., Smith, C. H., & Schneider, R. (1998). A new perspective on magnetic field sensing. SENSORS-PETERBOROUGH-, 15, 34-47.
    5. Chappert, C., Fert, A., & Van Dau, F. N. (2007). The emergence of spin electronics in data storage. Nature Materials, 6(11), 813-823. doi: 10.1038/nmat2024
    6. Daughton, J. (2003). Spin-dependent sensors. Proceedings of the IEEE, 91(5), 681-686. doi: 10.1109/JPROC.2003.811806
    7. Daughton, J., Brown, J., Chen, E., Beech, R., Pohm, A., & Kude, W. (1994). Magnetic field sensors using GMR multilayer. Magnetics, IEEE Transactions on, 30(6), 4608-4610. doi: 10.1109/20.334164
    8. Daughton, J. M. (1999). GMR applications. Journal of Magnetism and Magnetic Materials, 192(2), 334-342. doi: 10.1016/S0304-8853(98)00376-X
    9. Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnár, S., Roukes, M. L., Chtchelkanova, A. Y., Treger, D. M. (2001). Spintronics: A Spin-based electronics vision for the future. Science, 294(5546), 1488-1495. doi: 10.1126/science.1065389
    10. Sarah, M. T. (2008). The discovery, development and future of GMR: The Nobel Prize 2007. Journal of Physics D: Applied Physics, 41(9), 093001. doi: 10.1088/0022-3727/41/9/093001
    11. Bruno, P., & Chappert, C. (1991). Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Physical Review Letters, 67(12), 1602-1605. doi: 10.1103/PhysRevLett.67.1602
    12. Bruno, P., & Chappert, C. (1992). Ruderman-Kittel theory of oscillatory interlayer exchange coupling. Physical Review B, 46(1), 261-270. doi: 10.1103/PhysRevB.46.261
    13. Camley, R. E., & Barnaś, J. (1989). Theory of giant magnetoresistance effects in magnetic layered structures with antiferromagnetic coupling. Physical Review Letters, 63(6), 664-667. doi: 10.1103/PhysRevLett.63.664
    14. Fert, A., Barthélémy, A., Etienne, P., Lequien, S., Loloee, R., Lottis, D. K., Mosca, D. H., Petroff, F., Pratt, W. P., Schroeder, P. A. (1992). Magnetic multilayers: oscillatory interlayer exchange and giant magnetoresistance. Journal of Magnetism and Magnetic Materials, 104–107, Part 3, 1712-1716. doi: 10.1016/0304-8853(92)91521-T
    15. "The Nobel Prize in Physics 2007". Nobelprize.org. Nobel Media AB 2014. Web. <http://www.nobelprize.org/nobel_prizes/physics/laureates/2007/>
    16. Parker, M. R., Hossain, S., Seale, D., Barnard, J. A., Tan, M., & Fujiwara, H. (1994). Low-field giant magnetoresistance in Co/Cu, CoFe/Cu and CoNiFe/Cu multilayer systems. Magnetics, IEEE Transactions on, 30(2), 358-363. doi: 10.1109/20.312287
    17. Jiang, J., Gui Zeng, D., Ryu, H., Chung, K.-W., & Bae, S. (2010). Effects of controlling Cu spacer inter-diffusion by diffusion barriers on the magnetic and electrical stability of GMR spin-valve devices. Journal of Magnetism and Magnetic Materials, 322(13), 1834-1840. doi: 10.1016/j.jmmm.2009.12.036
    18. Parkin, S. S. P. (1992). Dramatic enhancement of interlayer exchange coupling and giant magnetoresistance in Ni81Fe19/Cu multilayers by addition of thin Co interface layers. Applied Physics Letters, 61(11), 1358-1360. doi: 10.1063/1.107591
    19. El Harfaoui, M., Le Gall, H., Ben Youssef, J., Pogossian, S., Thiaville, A., Gogol, P., Qachaou, A., Desvignes, J. M. (1999). GMR versus interfacial roughness induced from different buffers in (Co/Cu) ML. Journal of Magnetism and Magnetic Materials, 198–199, 107-109. doi: 10.1016/S0304-8853(98)00639-8
    20. Bouziane, K., Rawas, A. D. A., Maaza, M., & Mamor, M. (2006). Buffer effect on GMR in thin Co/Cu multilayers. Journal of Alloys and Compounds, 414(1–2), 42-47. doi: 10.1016/j.jallcom.2005.07.038
    21. Dei, T., Nakatani, R., Hoshino, K., & Sugita, Y. (1993). Effects of buffer layer materials on magnetoresistance in Ni-Fe/Cu multilayers. Journal of Magnetism and Magnetic Materials, 126(1–3), 489-491. doi: 10.1016/0304-8853(93)90665-O
    22. Marrows, C. H., & Hickey, B. J. (2001). Impurity scattering from δ-layers in giant magnetoresistance systems. Physical Review B, 63(22), 220405. doi: 10.1103/PhysRevB.63.220405
    23. Parkin, S. S. P. (1995). Giant magnetoresistance in magnetic nanostructures. Annual Review of Materials Science, 25, 357-388. doi: 10.1146/annurev.ms.25.080195.002041
    24. Bloemen, P. J. H., Johnson, M. T., van de Vorst, M. T. H., Coehoorn, R., de Vries, J. J., Jungblut, R., aan de Stegge, J., Reinders, A., de Jonge, W. J. M. (1994). Magnetic layer thickness dependence of the interlayer exchange coupling in (001) Co/Cu/Co. Physical Review Letters, 72(5), 764-767. doi: 10.1103/PhysRevLett.72.764
    25. Coehoorn, R. (1991). Period of oscillatory exchange interactions in Co/Cu and Fe/Cu multilayer systems. Physical Review B, 44(17), 9331-9337. doi: 10.1103/PhysRevB.44.9331
    26. Edwards, D. M., Mathon, J., Muniz, R. B., & Parkin, S. S. P. (1992). Dependence of the giant magnetoresistance in Co/Cu multilayers on layer thickness. Journal of Magnetism and Magnetic Materials, 114(3), 252-254. doi: 10.1016/0304-8853(92)90264-O
    27. Joyce, D. E., Faunce, C. A., Grundy, P. J., Fulthorpe, B. D., Hase, T. P. A., Pape, I., & Tanner, B. K. (1998). Crystallographic texture and interface structure in Co/Cu multilayer films. Physical Review B, 58(9), 5594-5601. doi: 10.1103/PhysRevB.58.5594
    28. Mosca, D. H., Petroff, F., Fert, A., Schroeder, P. A., Pratt Jr, W. P., & Laloee, R. (1991). Oscillatory interlayer coupling and giant magnetoresistance in Co/Cu multilayers. Journal of Magnetism and Magnetic Materials, 94(1–2), L1-L5. doi: 10.1016/0304-8853(91)90102-G
    29. Parkin, S. S. P., Bhadra, R., & Roche, K. P. (1991). Oscillatory magnetic exchange coupling through thin copper layers. Physical Review Letters, 66(16), 2152-2155. doi: 10.1103/PhysRevLett.66.2152
    30. Parkin, S. S. P., Li, Z. G., & Smith, D. J. (1991). Giant magnetoresistance in antiferromagnetic Co/Cu multilayers. Applied Physics Letters, 58(23), 2710-2712. doi: 10.1063/1.104765
    31. Parkin, S. S. P., Modak, A., & Smith, D. J. (1993). Dependence of giant magnetoresistance on Cu-layer thickness in Co/Cu multilayers: A simple dilution effect. Physical Review B, 47(14), 9136-9139. doi: 10.1103/PhysRevB.47.9136
    32. Sakrani, S. B., Wahab, Y. B., & Lau, Y. C. (2007). Giant magnetoresistance effect in Co/Cu/Co nanostructures. Journal of Alloys and Compounds, 434–435, 598-600. doi: 10.1016/j.jallcom.2006.08.250
    33. Shukh, A. M., Shin, D. H., & Hoffmann, H. (1994). Dependence of giant magnetoresistance in Co/Cu multilayers on the thickness of the Co layers. Journal of Applied Physics, 76(10), 6507-6509. doi: 10.1063/1.358244
    34. Diao, Z. T., Goto, S., Meguro, K., Tsunashima, S., & Jimbo, M. (1997). Role of the buffer layers in determining the antiferromagnetic coupling and magnetoresistance of NiFeCo/Cu superlattices. Journal of Applied Physics, 81(5), 2327-2335. doi: 10.1063/1.364236
    35. Minvielle, T. J., Wilson, R. J., & White, R. L. (1996). In situ scanning tunneling microscopy observation of surface evolution in magnetically coupled Co/Cu multilayers. Applied Physics Letters, 68(19), 2750-2752. doi: 10.1063/1.115586
    36. Kataoka, N., Saito, K., & Fujimori, H. (1993). Magnetoresistance of Co-X/Cu multilayers. Journal of Magnetism and Magnetic Materials, 121(1–3), 383-385. doi: 10.1016/0304-8853(93)91226-W
    37. Wang, D., Anderson, J., & Daughton, J. (1997). Thermally stable, low saturation field, low hysteresis, high GMR CoFe/Cu multilayers. Magnetics, IEEE Transactions on, 33(5), 3520-3522. doi: 10.1109/INTMAG.1997.597481
    38. Yoshiaki, S., & Koichiro, I. (1991). Magnetic and Magnetotransport Properties of CoxFe1-x/Cu Multilayers. Japanese Journal of Applied Physics, 30(10A), L1733. doi: 10.1143/JJAP.30.L1733
    39. Dieny, B., Speriosu, V. S., Parkin, S. S. P., Gurney, B. A., Wilhoit, D. R., & Mauri, D. (1991). Giant magnetoresistive in soft ferromagnetic multilayers. Physical Review B, 43(1), 1297-1300. doi: 10.1103/PhysRevB.43.1297
    40. Parkin, S. S. P. (1992). Oscillations in giant magnetoresistance and antiferromagnetic coupling in [Ni81Fe19/Cu]N multilayers. Applied Physics Letters, 60(4), 512-514. doi: 10.1063/1.106593
    41. Pettit, K., Gider, S., Parkin, S. S. P., & Salamon, M. B. (1997). Strong biquadratic coupling and antiferromagnetic-ferromagnetic crossover in NiFe/Cu multilayers. Physical Review B, 56(13), 7819-7822. doi: 10.1103/PhysRevB.56.7819
    42. Edelstein, A. S., Bussmann, K. M., Turner, D. C., & Chopra, H. D. (1998). Interlayer coupling in Co/Cu/permalloy/Cu multilayers. Journal of Applied Physics, 83(9), 4848-4854. doi: 10.1063/1.367282
    43. Valet, T., Jacquet, J. C., Galtier, P., Coutellier, J. M., Pereira, L. G., Morel, R., Lottis, D., Fert, A. (1992). Interplay between oscillatory exchange coupling and coercivities in giant magnetoresistive [Ni80Fe20/Cu/Co/Cu] multilayers. Applied Physics Letters, 61(26), 3187-3189. doi: 10.1063/1.107954
    44. Vavra, W., Cheng, S. F., Fink, A., Krebs, J. J., & Prinz, G. A. (1995). Perpendicular current magnetoresistance in Co/Cu/NiFeCo/Cu multilayered microstructures. Applied Physics Letters, 66(19), 2579-2581. doi: 10.1063/1.113507
    45. Golden, J., Miller, H., Nawrocki, D., & Ross, J. (2009). Optimization of bi-layer lift-off resist process. CS Mantech Technical Digest.
    46. Bernieri, A., Ferrigno, L., Laracca, M., & Tamburrino, A. (2007, 1-3 May 2007). Improving GMR magnetometer sensor uncertainty by implementing an automatic procedure for calibration and adjustment. Paper presented at the Instrumentation and Measurement Technology Conference Proceedings, 2007. IMTC 2007. IEEE.
    47. Daughton, J. M., & Chen, Y. J. (1993). GMR materials for low field applications. Magnetics, IEEE Transactions on, 29(6), 2705-2710. doi: 10.1109/20.280936
    48. Djamal, M., & Ramli. (2012). Development of Sensors Based on Giant Magnetoresistance Material. Procedia Engineering, 32, 60-68. doi: 10.1016/j.proeng.2012.01.1237
    49. Freitas, P. P., Ferreira, R., Cardoso, S., & Cardoso, F. (2007). Magnetoresistive sensors. Journal of Physics: Condensed Matter, 19(16), 165221. doi: 10.1088/0953-8984/19/16/165221
    50. Lenssen, K. M. H., Adelerhof, D. J., Gassen, H. J., Kuiper, A. E. T., Somers, G. H. J., & van Zon, J. B. A. D. (2000). Robust giant magnetoresistance sensors. Sensors and Actuators A: Physical, 85(1–3), 1-8. doi: 10.1016/S0924-4247(00)00342-3
    51. Rife, J. C., Miller, M. M., Sheehan, P. E., Tamanaha, C. R., Tondra, M., & Whitman, L. J. (2003). Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sensors and Actuators A: Physical, 107(3), 209-218. doi: 10.1016/S0924-4247(03)00380-7
    52. Slatter, R. (2012, 15-18 Oct. 2012). Magnetoresistive sensors for high performance electric drives. Paper presented at the Electric Drives Production Conference (EDPC), 2012 2nd International.
    53. Rieger, G., Ludwig, K., Hauch, J., & Clemens, W. (2001). GMR sensors for contactless position detection. Sensors and Actuators A: Physical, 91(1–2), 7-11. doi: 10.1016/S0924-4247(01)00480-0

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE