簡易檢索 / 詳目顯示

研究生: 林重佑
Chung-Yu Lin
論文名稱: 在偏序度量空間中的循環弱收縮固定點定理
Fixed point of cyclic weak contractions in partial metric spaces
指導教授: 陳啟銘
Chi-Ming Chen
李俊璋
Chiun-Chang Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 17
中文關鍵詞: 固定點循環弱收縮偏序度量空間
外文關鍵詞: Fixed point, Cyclic weak contraction, Partial metric spaces
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要是探討在完備的偏序度量空間中,一個建立在 φ,ϕ,ξ:R^+→R^+ 和 ψ:R^(+^4 )→R^+ 四個函數上的循環弱收縮函數之固定點定理。


    The purpose of this paper is to study a fixed point theorem for a mapping satisfying the cyclical generalized contractive conditions based on four functions φ,ϕ,ξ:R^+→R^+ and ψ:R^(+^4 )→R^+ in complete partial metric spaces.Our results generalize and improve many recent fixed point theorems in the literature.

    誌謝 i Abstract (in Chinese) ii Abstract (in English) iii Contents iv 1 Introduction and Preliminaries 2 2 Main results 6 Example 15 References 16

    [1] R.P. Agarwal, M.A. Alghamdi, N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory and Appl., (2012), 2012.40.
    [2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integerales, Fund. Math., 3(1922), 133-181.
    [3] C. Di Bari, T. Suzuki, C. Vetro, Best proximity for cyclic Meir-Keeler contractions, Nonlinear Anal., 69 (2008), 3790-3794.
    [4] P.N. Dutta, B.S. Choudhury, A generalization of contraction principle in
    metric spaces, Fixed Point Theory and Appl., (2008), Article ID 406368.
    [5] M. Eslamian, A. Abkar, A fixed point theorem for generalized weakly contractive mappings in complete metric space, Ital. J. Pure Appl. Math., (In press).
    [6] S. Jankovic, Z. Kadelburg, S. Radonevic, B. E. Rhoades, Best proximity point Theorems for p-cyclic Meir-Keeler contractions, Fixed Point Theory Appl., 2009 (2009), Article ID 197308, 9 pages.
    [7] S. Karpagam, S. Agrawal, Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal., 74(2010), 1040-1046.
    [8] E. Karapinar, I.M. Erhan, Best proximity point on different type contraction, Appl. Math. Inf. Sci., 5 (2011), 342-353.
    [9] E. Karapinar, I.M. Erhan, Fixed point theorem for cyclic maps on partial metric spaces, Appl. Math. Inf. Sci., 6 (2012), 239-244.
    [10] E. Karapinar, I.M. Erhan, Cyclic contractions and fixed point theorems, Filomat, 26 (2012), 777-7-82.
    [11] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, Vol.4 NO.1 (2003), 79-89.
    [12] S.G. Mattews, Partial metric topology, Proc. 8th Summer of Conference on General Topology and Applications, Ann. New York Aced. Sci., 728 (1994) 183-197.
    [13] S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Istid Math. Univ. Trieste, 36 (2004) 17-26.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE