研究生: |
黃詩斌 Huang, Shih-Pin |
---|---|
論文名稱: |
以液相微萃取法分析超微量有機物質之研究 Analysis of trace organic pollutants based on a liquid-phase microextraction technique |
指導教授: |
黃賢達
Huang, Shang-Da |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 142 |
中文關鍵詞: | 液相微萃取 、農藥 |
外文關鍵詞: | LPME |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
發展快速、簡單、不貴且環保的樣本前處理技術,在分析化學中是非常重要的關鍵,傳統的液液相萃取法或固相萃取法等,對於分析環境中之微量污染物有著花費大量時間或有機溶劑的缺點。近年來,研究的趨勢是以傳統液液萃取法的原理,藉由大幅度降低萃相與被萃相比值(acceptor -to- donor phase ratio),將傳統的LLE微小化,進而出現液相微萃液技術。配合使用中空纖維保護及加速有機溶劑在微體積(microvolumes)溶液中的萃取。此方法非常簡單、低價,在近乎不使用溶劑下,達到高靈敏度、濃縮的目的,同時亦能去除萃取物過度吸附(carry-over)的可能。因此本論文的研究動機是發展改良式的液相微萃取技術,配合氣相層析儀之分析方法,並將其運用在自然界中超微量有機物之測定。以下為各章節的主題與概要說明。
第一章為緒論,說明在發展經濟同時環境保護的重要性,提出本論文研究之目的,並介紹各章節中運用之分析技術的原理與特性。
第二章為利用液相微萃取法分析茶水及茶葉中之有機氯農藥。研究探討一般中空纖維液相微萃取法直接使用於基質複雜的茶水及茶葉中之可行性,除了分析時間的縮短,方法的簡便與靈敏度的提升外,並探討各項萃取參數之最佳化條件,與此技術之實際應用性,顯示可分析茶水及茶葉中超微量濃度之有機氯農藥。
第三章以溶劑降溫輔助液相微萃取法分析水中有機氯農藥。研究內容主要著重於將液相微萃取法應用於頂空分析,為克服溶劑揮發導致萃取時間過短的問題,故以溶劑降溫輔助系統延長萃取時間,增加萃取效能,除了方法靈敏度的提升外,並探討各項萃取參數之最佳化條件,與此技術之實際應用性,顯示可分析水中超微量濃度之有機氯農藥。
第四章之內容為動態頂空增長時間螺旋式液相微萃取法技術,並應用於水溶液樣品中微量有機氯農藥之分析。當使用溶劑降溫輔助系統延長萃取時間時,在中空纖維中容易產生氣泡,導致再現性下降。本研究中利用螺旋式中空纖維修正問題。另一方面,將大量的萃取液直接注入氣相層析儀,亦可提高其分析訊號,增加方法的靈敏度。研究中探討中空液相微萃取法的最佳化參數,並與固相微萃取法加以比較。其方法偵測極限可達到ppt以下。
第五章之內容是動態頂空增長時間螺旋式液相微萃取法技術與其應用。以螺旋式液相微萃取法增長萃取時間及增加萃取溶劑體積,提升萃取效率。本研究中討論了各項最佳化參數,以及應用在水樣中有機氯農藥的分析。
第六章則將上述開發的數種分析方法做簡單的整理,並展望未來分析技術可能的進展與應用。
Abstract
The development of faster, simpler, less expensive and more environment-friendly sample-preparation techniques is an important issue in chemical analysis. In this work, four analytical methods based on liquid-phase microextraction were described. The developed methods have been applied to the analysis of trace organic pollutants in different sample matrices such as water or tea.
Recent research trends involve miniaturisation of the traditional liquid-liquid extraction (LLE) principle by greatly reducing the acceptor-to-donor phase ratio. One of the emerging techniques in this area is liquid-phase microextraction (LPME), where a hollow fibre impregnated with an organic solvent is used to accommodate or protect microvolumes of acceptor solution. This novel methodology proved to be an extremely simple, low-cost and virtually solvent-free sample-preparation technique, which provided a high degree of selectivity and enrichment by additionally eliminating the possibility of carry-over between runs.
The current research focused on developing improved liquid-phase microextraction. The most important parameters and practical considerations for method optimisation are also discussed. The results show that these sample-preparation techniques coupled with mass spectrometric detection or electron capture detection could determinate the trace organic pollutants in the low ppb or ppt level.
[1] B. J. Danzo, The effects of environmental hormones on reproduction, Cell. Mol. Life Sci. 1998, 54, 1249
[2] 凌永健, 環境荷爾蒙的化學分析, 環境檢驗通訊雜誌 2000, 32, 2. (http://www.niea.gov.tw/analysis/publish/month/32/32th2-2.htm)
[3] C. L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem. 1990, 62, 2145.
[4] C. L. Arthur, L. M. Killam, S. Motlagh, M. Lim, D.W. Potter, J. Pawliszyn, Analysis of substituted benzene compounds in groundwater using solid-phase microextraction, Environ. Sci. Technol. 1992, 26, 979.
[5] E. Baltussen, P. Sandra, F. David, C. Cramers, Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles, J. Microcolumn Sep. 1999, 11, 737.
[6] Y. He, H. K. Lee, Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe, Anal. Chem. 1997, 69, 4634.
[7] Y. Wang, Y. C. Kwok, Y. He, H. K. Lee, Application of dynamic liquid-phase microextraction to the analysis of chlorobenzenes in water using a conventional microsyringe, Anal. Chem. 1998, 70, 4610.
[8] M. A. Jeannot, F. F. Cantwell, Solvent microextraction into a single drop, Anal. Chem. 1996, 68, 2236.
[9] M. A. Jeannot, F. F. Cantwell, Solvent microextraction as a speciation tool: Determination of free progesterone in a protein solution, Anal. Chem. 1997, 69, 2935.
[10] M. Ma, F. F. Cantwell, Solvent microextraction with simultaneous back-extraction for sample cleanup and preconcentration: quantitative extraction, Anal. Chem. 1998, 70, 3912.
[11] M. Ma, F. F. Cantwell, Solvent microextraction with simultaneous back-extraction for sample cleanup and preconcentration: preconcentration into a single microdrop, Anal. Chem. 1999, 71, 388.
[12] G. Shen, H. K. Lee, Hollow fiber-protected liquid-phase microextraction of triazine herbicides, Anal. Chem. 2002, 74, 648.
[13] H. G. Ugland, M. Krogh, K. E. Rasmussen, Liquid-phase microextraction as a sample preparation technique prior to capillary gas chromatographic-determination of benzodiazepines in biological matrices, J. Chromatogr. B 2000, 749, 85.
[14] S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-phase microextraction and capillary electrophoresis of acidic drugs, Electrophoresis 2000, 21, 579.
[15] T. G. Halvorsen, S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-phase microextraction and capillary electrophoresis of citalopram, an antidepressant drug, J. Chromatogr. A 2001, 909, 87.
[16] L. Zhao, H. K. Lee, Liquid-phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass spectrometry, Anal. Chem. 2002, 74, 2486.
[17] X. Jiang, H. K. Lee, Solvent bar microextraction, Anal. Chem. 2004, 76, 5591.
[18] S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis, Anal. Chem. 1999, 71, 2650.
[19] L. Zhu, L. Zhu, H. K. Lee, Liquid–liquid–liquid microextraction of nitrophenols with a hollow fiber membrane prior to capillary liquid chromatography, J. Chromatogr. A 2001, 924, 407.
[20] D. A. Lambropoulou, T. A. Albanis, Sensitive trace enrichment of environmental andiandrogen vinclozolin from natural waters and sediment samples using hollow-fiber, J. Chromatogr. A 2004, 1061, 11.
[21] J. B. Quintana, R. Rodil, T. Reemtsma, Suitability of hollow fibre liquid-phase microextraction for the determination of acidic pharmaceuticals in wastewater by liquid chromatography-electrospray tandem mass spectrometry without matrix effects, J. Chromatogr. A 2004, 1061, 19.
[22] L. Hou, H. K. Lee, Determination of pesticides in soil by liquid-phase microextraction and gas chromatography-mass spectrometry, J. Chromatogr. A 2004, 1038, 37.
[23] R. S. Zhao, W. J. Lao, X. B. Xu, Headspace liquid-phase microextraction of trihalomethanes in drinking water and their gas chromatographic determination, Talanta 2004, 62, 751.
[24] S. W. Myung, S. H. Yoon, M. Kim, Analysis of benzene ethylamine derivatives in urine using the programmable dynamic liquid-phase microextraction (LPME) device, Analyst 2003, 128, 1443.
[25] T. Kuuranne, T. Kotiaho, S. Pedersen-Bjergaard, K. E. Rasmussen, A. Leinonen, S. Westwood, R. Kostiainen, Feasibility of a liquid-phase microextraction sample clean-up and liquid chromatographic/mass spectrometric screening method for selected anabolic steroid glucuronides in biological samples, J. Mass Spectrom. 2003, 38, 16.
[26] S. Pedersen-Bjergaard, K. E. Rasmussen, Bioanalysis of drugs by liquid-phase microextraction coupled to separation techniques, J. Chromatogr. B 2005, 817, 3.
[27] H. P. Lia, G. C. Lib ,J. F. Jen, Determination of organochlorine pesticides in water using microwave assisted headspace solid-phase microextraction and gas chromatography, J. Chromatogr. A 2003, 1012, 129.
[28] M. Maroni, C. Colosio, A. Ferioli, A. Fait, Organochlorine pesticides, Toxicology 2000, 143, 61.
[29] F. J. Satos, M. T. Galceran, The application of gas chromatography to environmental analysis, TrAC Trends in Analytical Chemistry 2002, 21, 672.
[30] L.S. de Jager, A.R. Andrews, Preliminary studies of a fast screening method for cocaine and cocaine metabolites in urine using hollow fibre membrane solvent microextraction (HFMSME), Analyst 2001, 126, 1298.
[31] K.E. Rasmussen and S. Pedersen-Bjergaard, Developments in hollow fibre-based, liquid-phase microextraction, Trends Anal. Chem. 2004, 23, 1.
[32] K.E. Rasmussen, S. Pedersen-Bjergaard, M. Krogh, H.G. Ugland, T. Gronhaug, Development of a simple in-vial liquid-phase microextraction device for drug analysis compatible with capillary gas chromatography, capillary electrophoresis and high-performance liquid chromatography, J. Chromatogr. A 2000, 873, 3.
[33] M. C. López-Blanco, S. Blanco-Cid, B. Cancho-Grande, J. Simal-Gándara, A pplication of single-drop microextraction and comparison with solid-phase microextraction and solid-phase extraction for the determination of a- and b-endosulfan in water samples by gas chromatography–electron-capture detection, J. Chromatogr. A 2003, 984, 245.
[34] M. Palit, D. Pardasani, A. K. Gupta, D. K. Dubey, Application of single drop microextraction for analysis of chemical warfare agents and related compounds in water by gas chromatography/mass spectrometry, Anal. Chem. 2005, 77, 711.
[35] C. Basheer, H. K. Lee, J.P. Obbard, Application of liquid-phase microextraction and gas chromatography–mass spectrometry for the determination of polychlorinated biphenyls in blood plasma, J. Chromatogr. A 2004, 1022, 161.
[36]R.-s. Zhao, W.-j. Lao, X.-b. Xu, Headspace liquid-phase microextraction of trihalomethanes in drinking water and their gas chromatographic determination, Talanta 2004, 62, 751.
[37]C. L. Ye, Q. X. Zhoua, X. M. Wang, Headspace liquid-phase microextraction using ionic liquid as extractant for the preconcentration of dichlorodiphenyltrichloroethane and its metabolites at trace levels in water samples, Analytica Chimica Acta 2006, 572, 165.
[38] J. Pawliszyn, Solid Phase Microextraction, Theory and Practice, Wiley–VCH, New York, 1997.
[39] A. Przyjazny, J.M. Kokosa, Analytical characteristics of the determination of benzene, toluene, ethylbenzene and xylenes in water by headspace solvent microextraction, J. Chromatogr. A 2002, 977, 143.
[40] H. Lord, J. Pawliszyn, Method Optimization for the Analysis of Amphetamines in Urine by Solid-Phase Microextraction, Anal. Chem. 1997, 69, 3899.
[41] A.A. Boyd-Boland, J. Pawliszyn, Solid-phase microextraction of nitrogen-containing herbicides, J. Chromatogr. A 1995, 704, 163.
[42] D.D. Perrin, B. Dempsey (1994) In Buffers for PH and Metal Ion Control, Chapman and Hall, London.
[43] A.S. Yazdi, H. Assadi, Determination of Trace of Methyl tert-Butyl Ether in Water Using Liquid Drop Headspace Sampling and GC, Chromatographia 2004, 60, 699.
[44] A. Derouiche , M.R. Driss, J.P. Morizur , Simultaneous analysis of polychlorinated biphenyls and organochlorine pesticides in water by headspace solid-phase microextraction with gas chromatography–tandem mass spectrometry, J. Chromatogr. A 2007, 1138, 231.
[45] J. Cheng, M. Liu, X. Zhang,, L. Ding, Y. Yu, X. Wang, H. Jin, H. Zhang, Determination of triazine herbicides in sheep liver by microwave-assisted extraction and high performance liquid chromatography, Analytica Chimica Acta 2007, 590, 34
[46]S.-D. Huang, H.-I Huang, Y.-H. Sung, Analysis of triazine in water samples by solid-phase microextraction coupled with high-performance liquid chromatography, Talanta 2004, 64, 887.
[47]C. Ye , Q. Zhoua, X. Wang, Improved single-drop microextraction for high sensitive analysis, Journal of Chromatography A, 2007, 1139, 7–13
[48] M. H. Ma, F. F. Cantwell, Solvent Microextraction with Simultaneous Back-Extraction for Sample Cleanup and Preconcentration: Preconcentration into a Single Microdrop, Anal. Chem., 1999, 71, 388-393.
[49] S. H. Tung, V. Terje, A. Trude, J. Einar, E. R. Knut, P.-B. Stig, 25,000-fold pre-concentration in a single step with liquid-phase microextraction, Analytica Chimica Acta, 2007, 592, 1-8.
[50] 行政院農藥委會--農藥系統,什麼是農藥,民國93 年。(http://www.coa.gov.tw/program/pesticides/index.htm)
[51] 葉枚耕 譯,農藥生物化學,國立編譯館,民國75 年
[52] S. -K. Cho, A. M. A. E. Aty, J. -H. Choi, Y. -M. Jeong, H.-C. Shin, B. -J. Chang, C. Lee, J. -H. Shim, Effectiveness of pressurized liquid extraction and solvent extraction for the simultaneous quantification of 14 pesticide residues in green tea using GC ,J. Sep. Sci., 2008, 31, 1750-1760.