簡易檢索 / 詳目顯示

研究生: 劉玨
Chueh Liu
論文名稱: 以原子層沈積製備白金觸媒應用於氫氧質子交換膜燃料電池
Atomic Layer Deposition of Platinum Catalyst in Hydrogen and Oxygen Proton Exchange Membrane Fuel Cell
指導教授: 彭宗平
Tsong-Pyng Perng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 66
中文關鍵詞: 原子層沉積燃料電池氫氣氧氣質子交換膜
外文關鍵詞: Atomic layer deposition, fuel cell, hydrogen, oxygen, proton exchange membrane
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著能源危機與污染問題日益嚴重,燃料電池成為極有潛力的替代能源之一,但低觸媒活性與使用率,導致其成本過高;然而不同製程可改變觸媒活性與使用率,故期盼原子層沈積能提高此兩種特性。
    用原子層沈積白金在不同基板上,包含碳布、碳黑或碳管塗佈的碳布,以作為質子交換膜燃料電池觸媒使用。本實驗以顆粒尺寸來探討白金原子層沈積在矽基板上的自我限制行為,以及顆粒尺寸與循環數的比例關係。藉由掃瞄電子顯微鏡影像證實了這兩個性質,也觀察到基板效應:白金不能沈積在未經酸處理的碳布,也不能沈積在有較高鐵氟龍含量的碳黑或碳管塗佈的碳布上;然而,因為表面官能基的改變,白金可以沈積在經過酸處理的碳布,以及在較低鐵氟龍含量的碳黑或碳管塗佈的碳布上。
    比較不同膜電極組的效能測試,對陽極與陰極相同的膜電極組,E-TEK商用電極表現出最大的功率密度(W/cm2),然而以原子層沈積白金一百循環的碳布電極有最低的白金功率密度(gPt/kW: 每千瓦之白金克數)。在不同陽極,但陰極都是E-TEK商用電極的膜電極組中,陽極是以原子層沈積白金一百循環於碳管塗佈碳布的膜電極組展現了最好的白金功率密度,卻仍有與E-TEK商用電極相似的功率密度。


    With the increasing threats of energy crisis and pollutions, fuel cell has become one of the most prospective substitute energies, but low catalyst activity and utilization results in high cost; however different preparation methods can change catalyst activity and utilization, so it’s expected atomic layer deposition can increase these two properties.
    Atomic layer deposition (ALD) is used to deposit Pt as catalyst of proton exchange membrane fuel cell catalyst on different substrates, including carbon cloth, carbon black powders or carbon nanotubes (CNT) coated on carbon cloth. In this experiment, Particle size is used to discuss self-limiting behavior and proportionality between particle size and cycle numbers of ALD of Pt on Si substrate. Both of the two characteristics are verified by SEM images. Substrate effects are also observed: Pt can not deposit on carbon cloth without acid treatment, and can not deposit on carbon black powder or CNT coated carbon cloth with higher concentration of PTFE addition; however, because of the change of the surface functional groups, for carbon cloth with acid treatment and carbon black powder or CNT coated carbon cloth with lower concentration of PTFE addition, Pt can deposit on them.
    Performance tests of different membrane electrode assemblies (MEAs) are compared. For the MEAs of the same anode and cathode, as received E-TEK electrode shows the largest power density (W/cm2), while the electrode of carbon cloth with ALD of Pt for 100 cycles has the lowest Pt specific power density (gPt/kW: gram of Pt per kilowattage). For the MEAs of different anodes but cathodes are all as received E-TEK electrodes, anode of ALD of Pt on CNT coated carbon cloth for 100 cycles shows the best Pt specific power density, while it still has similar power density to E-TEK electrode.

    Contents 誌謝 摘要 Abstract Chapter I. Introduction.................................................................................1 1-1 Why Do We Choose Fuel Cells?............................................1 1-2 Brief History of Fuel Cells........................................................1 1-3 Why Do We Choose Atomic Layer Deposition (ALD)?...........3 II. Literature Review......................................................................6 2-1 Basic Principles of Fuel Cell.....................................................6 2-1-1 Thermodynamic Aspects.....................................................6 2-1-2 Kinetic Aspects....................................................................8 2-1-3 Three-Phase Boundary.......................................................8 2-2 Proton Exchange Membrane Fuel Cell (PEMFC)...................10 2-2-1 Schematic of PEMFC........................................................10 2-2-2 Catalyst..............................................................................14 2-2-2-1 Materials: Pt, Pt alloy, Pt-Free...................................14 2-2-2-2 Particle Size Effect....................................................15 2-2-2-3 Carbon Catalyst Supports: Carbon Black, CNT........18 2-3 PEMFC Catalyst Deposition Methods....................................20 2-3-1 Wet Process.......................................................................20 2-3-1-1 Chemical Process.......................................................20 2-3-1-2 Electrochemical Process............................................23 2-3-2 Dry Process........................................................................25 2-3-3 Performance Comparison of Different Catalyst Deposition Methods.............................................................................28 2-4 Atomic Layer Deposition (ALD)............................................28 2-4-1 ALD Characteristics......................................................28 2-4-2 ALD of Pt......................................................................32 III. Experimental...................................................................38 3-1 Substrate Preparation...............................................................38 3-2 Deposition of Catalyst.............................................................38 3-2-1 ALD of Platinum...........................................................38 3-2-2 Sputtering......................................................................42 3-3 Preparation of MEA................................................................42 3-4 Single Cell Setup.....................................................................42 3-5 Fuel Cell Test Station and Performance Test Conditions........45 3-6 Characterization and Chemical Analysis of Pt Catalyst..........47 IV. Results and Discussion...........................................................48 4-1 ALD Characteristics................................................................48 4-1-1 Self-Limiting.................................................................48 4-1-2 Proportionality between Cycle Number and Particle Size................................................................................48 4-1-3 Substrate Effect.............................................................48 4-2 Pt Loading on Different Substrates.........................................56 4-3 Performance Tests of MEAs Made by ALD, Chemical and Sputtering Methods.................................................................58 V. Conclusions................................................................................62 References.................................................................................63

    References
    [1] 中華民國經濟部能源局網頁.
    [2] 詹益亮, 洪桂彬, ”科學發展,” 413, 18 (2007).
    [3] 胡成春, “清潔新能源─21世紀的能源,” 科學技術文獻出版社 (1995).
    [4] J. O’M Bockris, S. Srinivasan, “Fuel Cells: Their Electrochemistry,” McGraw-Hill (1969).
    [5] G. Hoogers, ”Fuel Cell Technology Handbook,” CRC Press, London and New York (2003).
    [6] L. Carrette, K. A. Friedrich, U. Stimming, Chem. Phys. Chem., 1, 162 (2000).
    [7] J. H. Wee, J. Power Sources, 161, 1 (2006).
    [8] N. W. Deluca, J. Polym. Sci., Part B: Polym. Phys., 44, 2201 (2006).
    [9] K. Kordesch, G.. Simader, “Fuel Cells and Their Applications,” VCH Publishers, Inc., New York, NY (1996).
    [10] K.Y. Chan, J. Ding, J. Ren, S. Cheng ,K.Y. Tsang, J . Mater. Chem., 14, 505 (2004).
    [11] http://0rz.tw/b52QX.
    [12] http://0rz.tw/302KG.
    [13] J. Singh, D.E. Wolfe, J. Mater. Sci., 40, 1 (2005).
    [14] A. F. Gullá, M. S. Saha, R. J. Allen, S. Mukerjee, Electrochem. Solid-State Lett., 8, A504 (2005).
    [15] A.F. Gullá, M. S. Saha, R. J. Allen, S. Mukerjee, J. Electrochem. Soc., 153, A366 (2006).
    [16] S. Hirano, J. Kim, S. Srinivasan, Electrochim. Acta, 42, 1587 (1997).
    [17] S. Y. Cha, W. M. Lee, J. Electrochem. Soc., 146, 4055 (1999).
    [18] R. O’Hayre, S. Lee, S. Cha, F.B. Prinz, J. Power Sources, 109, 483 (2002).
    [19] E. A. Ticianelli, C. R. Derouin, S. Srinivasan, J. Electroanal. Chem., 251,275 (1988).
    [20] S. Mukerjee, S. Srinivasan, A. J. Appleby, Electrochim Acta 38, 1661 (1993).
    [21] C. A. Cavalca, J. H. Arps, M. Murthy, US Pat. No. 6,300,000 (2001).
    [22] A. T. Haug, R. E. White, J. W. Weidner, W. Huang, S. Shi, T. Stoner, N. Rana, J. Electrochem. Soc., 149 (3), A280 (2002).
    [23] R. L. Puurunen, J. Appl. Phys., 97, 121301 (2005).
    [24] T. Aaltonen, M. Ritala, T. Sajavaara, J. Keinonen, M. Leskela, Chem. Mater., 15, 1924 (2003).
    [25] M. Ritala, M. Leskela, “Handbook of Thin Film Materials,” Academic Press, San Diego, Vol. 1, 103 (2002).
    [26] D. Thompsett, “Handbook of Fuel Cells---Fundamentals, Technology and Applications,” Volume 3, John Wiley & Sons (2003).
    [27] T. Aaltonen, M. Ritala, Y. L. Tung, Y. Chi, K. Arstila, K. Meinander, M. Leskelä, J. Mater. Res., 19, 3353 (2004).
    [28] A. K. Praturi, “Proceedings of the sixth international conference on chemical vapor deposition, 1977,” The Electrochemical Society, p.20.
    [29] T. Suntola, “Atomic layer Epitaxy,” Blackie, Glasgow and London (1990).
    [30] 郭政肇, “小型質子交換膜燃料電池白金觸媒研究,” 清華大學材料所論文 (2001).
    [31] 蔡天翔, “質子交換膜燃料電池白金觸媒—高分散白金奈米粉體於不同碳支撐材之製備與電化學特性,” 清華大學材料所論文 (2006).
    [32] S. Litster, G. McLean, J. Power Sources, 130, 61, (2004).
    [33] K. Kinoshita, “Electrochemical oxygen technology,” Wiley, New York (1992).
    [34] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal., B, 56, 9 (2005).
    [35] K. Lee, J. Zhang, H. Wang, D.P. Wilkinson, J. Appl. Electrochem., 36, 507 (2006).
    [36] EG&G Technical Services, Inc., “Fuel Cell Handbook (7th Edition),” U.S. Department of Energy (2004).
    [37] T. Tada, “Handbook of Fuel Cells---Fundamentals, Technology and Applications,” Volume 3, John Wiley & Sons (2003).
    [38] Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L. M. Gan, Langmuir, 18, 4054 (2002).
    [39] M. M. Shaijumon, S Ramaprabhua, N. Rajalakshmi, Appl. Phys. Lett., 88, 253105 (2006).
    [40] A.L. Dicks, J. Power Sources, 156, 128 (2006).
    [41] N. R. K. Vilambi Reddy, E. B. Anderson, E. J. Taylor, US Pat. No. 5,084,144 (1992).
    [42] E. J. Taylor, E. B. Anderson, N. R. K. Vilambi, J. Electrochem. Soc., 139, L45 (1992).
    [43] M. W. Verbrugge, J. Electrochem. Soc., 141, 46 (1994).
    [44] G.D. Stäb, P. Urban, US Pat. No. 6,258,239 (2001).
    [45] H. Kim, N. P. Subramanian, B. N. Popov, J. Power Sources, 138, 14 (2004).
    [46] K. H. Choi, H. S. Kim, T. H. Lee, J. Power Sources, 75, 230 (1998).
    [47] N. Cunningham, E. Irissou, M. Lefe`vre, M.-C. Denis, D. Guay, J.-P. Dodelet, Electrochem. Solid-State Lett., 6, A125 (2003).
    [48] D. Gruber, N. Ponath, J. Muller, F. Lindstaedt, J. Power Sources, 150, 67 (2005)
    [49] Z. Xue, H. Thridandam, H. D. Kaesz, R. F. Hicks, Chem. Mater., 4, 162 (1992)
    [50] D. A. Skoog, F. J. Holler, T. A. Nieman, “Principle of Instrumental Analysis,” pp. 255-271.
    [51] H. A. Gasteiger, J. E. Panels, S. G. Yan, J. Power Sources, 127, 162 (2004)
    [52] P. Atanassova, Y. Sun, D. Kountz, J. Schwartz, L. Wang, “VII.C.5 Development of High-Performance, Low-Pt Cathodes Containing New Catalysts and Layer Structure,” DOE Hydrogen Program, FY 2005 Progress Report.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE