研究生: |
張淵為 |
---|---|
論文名稱: |
氟化鈉輔助合成多孔二氧化鈦之光催化研究 Porous titania synthesized by NaF assistance and its photocatalysis |
指導教授: | 李紫原 |
口試委員: |
裘性天
徐文光 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 光觸媒 、二氧化鈦 、空心球 、氟化鈉 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用溶膠凝膠法在不同反應環境下合成二氧化鈦,在四異丙基鈦進行水解反應時,加入不同的溶液使得最後的產物有著不同的形貌,並利用此兩種不同形貌的樣品做各自的後處理,討論其光催化的效果。在第一個實驗中在水解反應時,我們配置了乙醇和氟化鈉水溶液的混合溶液,使得水解時存在著氟化鈉模版為四異丙基鈦前趨物成核及成長的優先位置,並且討論其後處理對光催化的影嚮。而在第二個實驗中,我們配置了乙醇和水的混合溶液,使得水解反應時以最小表面能的形貌,產生球狀的二氧化鈦,之後並利用氟化鈉水溶液進行水熱法反應,產生一空心球結構,並且有擁有 (001) 最佳光催化活性露面,表現出極佳的光催化效果。
We synthesize TiO2 by sol-gel process using TTIP in various solutions to manipulate the morphologies of the products. The photocatalytic performance of these powders were examined and discussed in detail. In the first experiment, NaF(aq) and ethanol were added as hydrolysis took place. The NaF precipitated in solution acted as a template on which precursor preferentially react.. In second experiment, we used water and ethanol to hydrolyze the alkoxide. We obtain sphere-like amorphous TiO2 because it has the least surface energy. Then, we use NaF solution to do hydrothermal reaction. We obtain hollow sphere and possess (001) plane which is the most active plane in anatase TiO2. We also discuss photocatalytic performance of these TiO2.
1. Fujishima, A. and K. Honda, ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE. Nature, 1972. 238(5358): p. 37-+.
2. Crawford, S., E. Thimsen, and P. Biswas, Impact of Different Electrolytes on Photocatalytic Water Splitting. Journal of the Electrochemical Society, 2009. 156(5): p. H346-H351.
3. Kudo, A., Photocatalyst materials for water splitting. Catalysis Surveys from Asia, 2003. 7(1): p. 31-38.
4. Luo, H.M., et al., Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chemistry of Materials, 2004. 16(5): p. 846-849.
5. Park, J.H., S. Kim, and A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters, 2006. 6(1): p. 24-28.
6. Yin, Y.X., Z.G. Jin, and F. Hou, Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays. Nanotechnology, 2007. 18(49).
7. Chen, D.H., et al., Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells. Advanced Materials, 2009. 21(21): p. 2206-+.
8. Kim, Y.J., et al., Formation of Highly Efficient Dye-Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO2 Spheres. Advanced Materials, 2009. 21(36): p. 3668-+.
9. Koo, H.J., et al., Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells. Advanced Materials, 2008. 20(1): p. 195-+.
10. Park, K., et al., Effect of an Ultrathin TiO2 Layer Coated on Submicrometer-Sized ZnO Nanocrystallite Aggregates by Atomic Layer Deposition on the Performance of Dye-Sensitized Solar Cells. Advanced Materials, 2010. 22(21): p. 2329-2332.
11. Yelamanchili, R.S., et al., Shaping Colloidal Rutile into Thermally Stable and Porous Mesoscopic Titania Balls. Small, 2009. 5(11): p. 1326-1333.
12. Zhang, F.L., et al., Ordered mesoporous Ag-TiO2-KIT-6
heterostructure: synthesis, characterization and photocatalysis. Journal of Materials Chemistry, 2009. 19(18): p. 2771-2777.
13. Yang, H.G., et al., Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008. 453(7195): p. 638-U4.
14. Zhang, D.Q., et al., A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. Chemical Communications, 2009(29): p. 4381-4383.
15. Chen, H.A., et al., Structuring a TiO2-Based Photonic Crystal Photocatalyst with Schottky Junction for Efficient Photocatalysis. Environmental Science & Technology. 44(1): p. 451-455.
16. Liu, Y., et al., TiO2 Nanoflakes Modified with Gold Nanoparticles as Photocatalysts with High Activity and Durability under near UV Irradiation. Journal of Physical Chemistry C. 114(3): p. 1641-1645.
17. Li, H., et al., TiO2-Ag Nanocomposites by Low-Temperature Sol-Gel Processing. Journal of the American Ceramic Society. 93(2): p. 445-449.
18. Sun, L., et al., Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. Journal of Hazardous Materials, 2009. 171(1-3): p. 1045-1050.
19. Serpone, N., et al., EXPLOITING THE INTERPARTICLE ELECTRON-TRANSFER PROCESS IN THE PHOTOCATALYZED OXIDATION OF PHENOL, 2-CHLOROPHENOL AND PENTACHLOROPHENOL - CHEMICAL EVIDENCE FOR ELECTRON AND HOLE TRANSFER BETWEEN COUPLED SEMICONDUCTORS. Journal of Photochemistry and Photobiology a-Chemistry, 1995. 85(3): p. 247-255.
20. Weirich, T.E., et al., Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2. Ultramicroscopy, 2000. 81(3-4): p. 263-270.
21. Muscat, J., N.M. Harrison, and G. Thornton, Effects of exchange, correlation, and numerical approximations on the computed properties of the rutile TiO2 (100) surface. Physical Review B, 1999. 59(3): p. 2320-2326.
22. Burdett, J.K., et al., STRUCTURAL ELECTRONIC RELATIONSHIPS IN INORGANIC SOLIDS - POWDER NEUTRON-DIFFRACTION STUDIES OF THE RUTILE AND ANATASE POLYMORPHS OF TITANIUM-DIOXIDE AT 15 AND
295-K. Journal of the American Chemical Society, 1987. 109(12): p. 3639-3646.
23. Hoffmann, M.R., et al., ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS. Chemical Reviews, 1995. 95(1): p. 69-96.
24. Yamashita, H., et al., PHOTOCATALYTIC REDUCTION OF CO2 WITH H2O ON TIO2 AND CU/TIO2 CATALYSTS. Research on Chemical Intermediates, 1994. 20(8): p. 815-823.
25. Sanchez, C., et al., CHEMICAL MODIFICATION OF ALKOXIDE PRECURSORS. Journal of Non-Crystalline Solids, 1988. 100(1-3): p. 65-76.
26. Mattox, D.M., SOL-GEL DERIVED, AIR-BAKED INDIUM AND TIN OXIDE-FILMS. Thin Solid Films, 1991. 204(1): p. 25-32.
27. Terabe, K., et al., MICROSTRUCTURE AND CRYSTALLIZATION BEHAVIOR OF TIO(2) PRECURSOR PREPARED BY THE SOL-GEL METHOD USING METAL ALKOXIDE. Journal of Materials Science, 1994. 29(6): p. 1617-1622.
28. Doeuff, S., et al., HYDROLYSIS OF TITANIUM ALKOXIDES - MODIFICATION OF THE MOLECULAR PRECURSOR BY ACETIC-ACID. Journal of Non-Crystalline Solids, 1987. 89(1-2): p. 206-216.
29. Tsai, M.C., et al., Tailor made Mie scattering color filters made by size-tunable titanium dioxide particles. Journal of Physical Chemistry C, 2008. 112(7): p. 2697-2702.
30. Dawson, W.J., HYDROTHERMAL SYNTHESIS OF ADVANCED CERAMIC POWDERS. American Ceramic Society Bulletin, 1988. 67(10): p. 1673-1678.
31. Linsebigler, A.L., G.Q. Lu, and J.T. Yates, PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS. Chemical Reviews, 1995. 95(3): p. 735-758.
32. Ballauff, M., Spherical polyelectrolyte brushes. Progress in Polymer Science, 2007. 32: p. 1135-1151.
33. Lu, Y., et al., Well-Defined Crystalline TiO2 Nanoparticles Generated and Immobilized on a Colloidal Nanoreactor. Macromolecular Chemistry and Physics, 2009. 210(5): p. 377-386.
34. Sarkar, J., et al., Surfactant-Templated Synthesis and Catalytic Properties of Patterned Nanoporous Titania Supports Loaded with
Platinum Nanoparticles. Chemistry of Materials, 2008. 20(16): p. 5301-5306.
35. Kresge, C.T., et al., ORDERED MESOPOROUS MOLECULAR-SIEVES SYNTHESIZED BY A LIQUID-CRYSTAL TEMPLATE MECHANISM. Nature, 1992. 359(6397): p. 710-712.
36. Lazzeri, M., A. Vittadini, and A. Selloni, Structure and energetics of stoichiometric TiO2 anatase surfaces (vol 63, art no 155409, 2001). Physical Review B, 2002. 65(11).
37. Lazzeri, M., A. Vittadini, and A. Selloni, Structure and energetics of stoichiometric TiO2 anatase surfaces. Physical Review B, 2001. 63(15).
38. Burda, C., et al., Enhanced nitrogen doping in TiO2 nanoparticles. Nano Letters, 2003. 3(8): p. 1049-1051.
39. Soni, S.S., et al., Visible-light photocatalysis in titania-based mesoporous thin films. Advanced Materials, 2008. 20(8): p. 1493-+.
40. Liu, S., et al., Highly active V-TiO2 for photocatalytic degradation of methyl orange. Applied Surface Science, 2009. 255(20): p. 8587-8592.
41. Ertl, G., H. Knözinger, and J. Weitkamp, Handbook of Heterogeneous Catalysis, 1997. vol 3(VCH D-69451 Weinheim): p. 1508.
42. Higashimoto, S., et al., Effect of Surface Treatment on the Selective Photocatalytic Oxidation of Benzyl Alcohol into Benzaldehyde by O-2 on TiO2 Under Visible Light. Topics in Catalysis. 53(7-10): p. 578-583.
43. Park, H. and W. Choi, Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. Journal of Physical Chemistry B, 2004. 108(13): p. 4086-4093.
44. Shiraishi, Y., N. Saito, and T. Hirai, Adsorption-driven photocatalytic activity of mesoporous titanium dioxide. Journal of the American Chemical Society, 2005. 127(37): p. 12820-12822.
45. Li, J. and H.C. Zeng, Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. Journal of the American Chemical Society, 2007. 129(51): p. 15839-15847.
46. Yang, H.G. and H.C. Zeng, Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. Journal of Physical Chemistry B, 2004. 108(11): p. 3492-3495.
47. Yu, J.C., et al., Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials, 2002. 14(9): p. 3808-3816.
48. Yamabi, S. and H. Imai, Crystal phase control for titanium dioxide films by direct deposition in aqueous solutions. Chemistry of Materials, 2002. 14(2): p. 609-614.
49. Yu, J.G., et al., Fabrication of hollow inorganic microspheres by chemically induced self-transformation. Advanced Functional Materials, 2006. 16(15): p. 2035-2041.
50. Johnson, R.W., E.S. Thiele, and R.H. French, Lightscattering efficiency white pigments: an analysis of model core-shell pigments vs. optimized rutile TiO2. Tappi Journal, 1997. 80(11): p. 233-239.
51. Ferber, J. and J. Luther, Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 1998. 54(1-4): p. 265-275.
52. Evanoff, D.D. and G. Chumanov, Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. Journal of Physical Chemistry B, 2004. 108(37): p. 13957-13962.
53. Zhang, Q.F., et al., Polydisperse aggregates of ZnO nanocrystallites: A method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Advanced Functional Materials, 2008. 18(11): p. 1654-1660.