簡易檢索 / 詳目顯示

研究生: 蘇煥傑
Huan-Chieh Su
論文名稱: 多層催化金屬合成高品質單壁奈米碳管之研究
On the roles of multilayered metal catalysts in the synthesis of high-quality single-walled carbon nanotubes
指導教授: 蔡春鴻
Chuen-Horng Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 105
中文關鍵詞: 單層奈米碳管多層催化金屬高溫化學氣相沉積奈米碳管場效電晶體
外文關鍵詞: SWNTs, multilayered, Thermal-CVD, CNT-FETs
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用多層催化金屬層合成單層奈米碳管(SWNTs),合成方法為高溫熱裂解化學氣相沉積法(Thermal CVD),成長溫度為900°C,碳源氣體為甲烷(methane)。我們藉由有系統的變化多層催化金屬組合,來研究各金屬層在成長SWNTs時所扮演的角色,並利用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、及微拉曼光譜儀(micro-Raman spectroscopy)來定義SWNTs特性,實驗結果顯示Al支撐層(Al supporting layer)對於合成SWNTs扮演極關鍵角色,Mo和Fe催化劑共同作用,可以有效拓寬合成SWNTs的製程視窗,並增加SWNTs的產率。更進一步地,我們利用原子力顯微鏡 (Atomic force microscope,AFM )、歐傑電子光譜分析(Auger electron spectrometer,AES)、X光光電子能譜術(X-ray photoelectron spectroscopy,XPS)來分析多層催化金屬層,並提出SWNTs的合成模型。最後我們利用兩段式製程法,即將試片先經由電漿處理,形成Si的奈米尖椎,催化劑會位於其頂端,然後將試片送入高溫爐合成,而成長出懸掛式SWNTs,實驗結果顯示此製程所合成的懸掛式SWNTs,具有較高品質,並較有機會形成單根SWNTs。本論文的研究是為了將來運用於碳管電晶體(CNT-FETs)上的製作。


    In this paper, the high quality single-walled carbon nanotubes (SWNTs) were synthesized by multilayered metal catalysts on silicon or silicon oxide substrate in thermal chemical vapor deposition of methane. The roles of multilayered metal catalyst were investigated by systematically varying the combination of multilayered structure. The scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and micro-Raman spectroscopy were used for characterization. It was found that aluminum supporting layer was very crucial in synthesizing high-purity SWNTs. A thin molybdenum layer in collaboration with an ultra-thin iron catalyst was found very effective in extending the operation window of SWNTs synthesis. The investigation of radial breathing mode (RBM) and the G-band/D-band intensities by micro-Raman measurements would further reveal the strong dependence of the diameter distribution of SWNTs on the different combinations of multilayered structure. An optimized combination was found Mo(0.2 nm)/Fe(1 nm)/ Al(10 nm) on silicon substrate, in which the peak of RBM was sharp and IG/ID ratio was at least 20 from micro-Raman analysis. Furthermore, the Auger electron spectrometer (AES) analysis was utilized to examine the evolution of the depth profile of multilayered structure due to the pre-treatment, which would lead to the examination of the role of each layer. The result of these investigations would be presented and discussed.

    摘要 ……………………………………………………………………i 第一章 研究動機 ……………………………………………………1 參考文獻……………………………………………………………3 第二章 文獻回顧 ……………………………………………………4 2-1奈米碳管(Carbon Nanotube,CNT) ……………………………5 2-2奈米碳管之合成 ………………………………………………7 2-2-1奈米碳管之合成方法 …………………………………7 2-2-2單層奈米碳管之合成(Synthesis of SWNTs) …………8 2-3單層奈米碳管之成長機制……………………………………15 2-3-1 SWNTs直徑和奈米催化顆粒相關性 ………………15 2-3-2 VLS成長機制…………………………………………16 2-3-3 SLS成長機制…………………………………………18 2-4奈米碳管之電性………………………………………………19 2-4-1碳管的電子能態結構…………………………………19 2-4-2碳管的電子特性………………………………………21 2-4-3碳管電晶體的製作和效能……………………………26 2-4-4碳管電晶體的ambipolar行為 ………………………32 2-4-5庫倫障礙(coulomb blockade,CB) …………………33 2-4-6 魯丁格液體(Luttinger liquids) ………………………34 2-5碳管量測技術…………………………………………………35 參考文獻 …………………………………………………………38 第三章 實驗設備……………………………………………………41 3-1 電子槍蒸鍍儀(Electron Gun Evaporation) …………………41 3-2 高溫爐化學氣相沉積機台 …………………………………43 3-3 電感耦合電漿化學氣相沉積機台(ICP,CVD)……………44 3-4 微拉曼光譜儀(□-Raman) …………………………………45 3-5 場發射掃瞄式電子顯微鏡 (SEM) ………………………46 3-6 穿透式電子顯微鏡(TEM) …………………………………47 第四章 結果與討論…………………………………………………48 4-1多層催化金屬層成長單壁奈米碳管…………………………49 4-1-1多層催化金屬層之選取………………………………49 4-1-2 實驗簡介 ……………………………………………52 4-1-3 分析結果 ……………………………………………54 4-2 多層催化金屬層之探討 ……………………………………65 4-2-1原子力顯微鏡 (Atomic force microscope,AFM ) …65 4-2-2 歐傑電子光譜分析( AES) …………………………67 4-2-3 X光光電子能譜術(X-ray photoelectron spectroscopy,XPS)………………………………………………………73 4-2-4 單層奈米碳管成長模型 ……………………………75 4-3 最佳化製程參數探討 ………………………………………76 4-3-1 成長時間探討 ………………………………………77 4-3-2 製程溫度探討 ………………………………………79 4-3-3 製程壓力探討 ………………………………………81 4-3-4 碳源/氫氣比例探討…………………………………81 4-3-5 總結比較 ……………………………………………83 4-4 多層催化金屬層扮演角色 …………………………………84 4-5 SWNTs 側向生長行為………………………………………86 4-6 電漿處理 ……………………………………………………89 參考文獻 …………………………………………………………96 第五章 總結與未來展望……………………………………………98 5-1 總結…………………………………………………………98 5-2 未來展望 …………………………………………………100 參考文獻列表…………………………………………………………102

    第一章參考文獻
    [1] R. Saito. G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon
    Nanotubes, Imperial College Press, London, 1998.
    [2] R. Martel, et al. Appl. Phys. Lett. 73, 2447 (1998).
    [3] Adrian Bachtold, et al. Science 294, 1317 (2001).
    [4] V. Derycke, et al. Nano Lett. 1(9) 453 (2001); Appl. Phys. Lett. 80, 2773 (2002).
    [5] S. Heinze et al. Phys. Rev. Lett. 89, 106801 (2002)
    [6] A. Javey, et al. Nano Lett. 4, 447(2004).
    [7] T. Durkop, Nano Lett. 4, 35(2004).
    [8] A. Javey, et al. Nature 424, 654(2003).
    [9] S. J. Wind, et al. Appl. Phys. Lett. 80, 3817(2002)

    第二章參考文獻
    [1]. S. Iijima, Nature 354, (1991) 56.
    [2]. S. Iijima and T. Ichihashi, Nature 363, (1993) 603.
    [3].M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.),”
    Carbon nanotubes: Synthesis, structure, Properties, and Application”, Springer, Berlin, 2002.
    [4] T. Guo et al, Chem. Phys. Lett. 49, 243. (1995).
    [5] M. Meyyappan et al, Plasma Sources Sci. Technol. 12, 205. (2003)
    [6] Jing Kong et al. Chemical Physics Letters 292 (1998) 567-574.
    [7] J.-F. Colomer , C. Stephan , S. Lefrant , G. Van Tendeloo , I. Willems ,Z. Konya , A. Fonseca , Ch. Laurent , J. B.Nagy , Chem. Phys. Lett. 317(2001) 83.
    [8] L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan, Chem. Phys. Lett. 348 (2001) 368.
    [9] H. Hongo a,b,*, F. Nihey a,b, T. Ichihashi a, Y. Ochiai a,b, M. Yudasaka a,c, S. Iijima a,b,c, Chem. Phys. Lett. 380 (2003) 158.
    [10] H. Cui a, G. Eres , J.Y. Howe , A. Puretkzy , M. Varela ,D.B. Geohegan , D.H. Lowndes, Chem. Phys. Lett. 374 (2003) 222.
    [11] J.W. Ward , B.Q. Wei, P.M. Ajayan , Chem. Phys. Lett. 376 (2003) 717
    [12] Y.Murakami, S. Maruyama, Chem. Phys. Lett. 385 (2004) 298.
    [13] G. L. Hornyak et al. Journal of Physics Chemical B 106 (2002) 2821-2825.
    [14] Ruth Zhang, Raymond K. Tsui, John Tresek, Adam M. Rawlett, Islamshah Amlani, and Theresa Hopson, J. Phys. Chem. B 107 (2003) 3137.
    [15] Robert Seidel et al. Journal of Physics Chemical B 108 (2004) 1888-1893.
    [16] Yoshikazu Homma, Takayuki Yamashita, Paul Finnie, Masato Tomita, and Toshio Ogino J.J.Appl.Phys.41(2002)89.
    [17] R.G.Lacerda. M.Chhowalla, Appl. Phys. Lett. 84 (2004) 269.
    [18] Kohei Mizuno et al. Journal of Physics Chemical B 109 (2005) 2632-2637.
    [19] W.E. Alvarez et al. Carbon 39 (2001) 547–558.
    [20] S. Tang, Z. Zhong, Z. Xiong, L. Sun, L. Liu, J. Lin, Z.X. Shen, K.L. Tan, Chem. Phys. Lett. 350 (2001) 19.
    [21] R. Seidel, M. Liebau, G. Duesberg, F. Kreupl, E. Unger, A. P. Graham, And W. Hoenlein, Nanolett., vol. 3 (2003) 965.
    [22] A.R. Harutyunyan, B. Pradhan, U. Kim, G. Chen, P.Eklund, NanoLett. Vol.2 (2002) 525.
    [23] R. Y. Zhang, I. Amlani, J. Baker, J. Tresek, R. K. Tsui, and P. Fejes, Nanolett. vol. 3, (2003)731–735.
    [24] R.G.Lacerda. M.Chhowalla, J. of Appl. Phys. 96 (2004) 4456
    [25] D.E.Resasco, W.E.Alvarez, J.of Nanoparticle Research. 4 (2002)131.
    [26] Toshiaki Kato et al, Chemical Physics Letters 381 (2003) 422.
    [27] Toshiaki KATO et al, Japanese Journal of Applied Physics ,43 (2004) 1278.
    [28] S. Hofmann Applied Physics Letters 83 (2004) 1.
    [29] Yiming Li, David Mann, and Hongjie Dai. Nanolett. vol. 4, (2004) 317.
    [30] Islamshah Amlani et al,IEEE Transaction on Nnotechnology,Vol.3(2004)202.
    [31] 莊鎮宇,國立清華大學 工程與系統科學系博士論文。(中華名國九十三年七月).
    [32] J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Nature 395 (1998) 878.
    [33] Yiming Li, Woong Kim, Yuegang Zhang, Marco Rolandi, Dunwei Wang, and Hongjie Dai* , J. Phys. Chem. B 2001, 105, 11424.
    [34] J.Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J.-C. Charlier, Phy. Rev. Lett.87(2001)275504.
    [35] Feng Ding, Kim Bolton, and Arne Rose´n, J. Phys. Chem. B 2004, 108, 17369.
    [36] A.Gorbunov , O. Josta, W. Pompea, A. Graffb, Carbon 40 (2002) 113–118.
    [37] R. Landauer, Philos. Mag. 21, 863 (1970).
    [38] T. Ando, J. Phys. Soc. Japan 66, 1066 (1996).
    [39] Single Wall Carbon Nanotube Electronics. P. McEuen, M.Fuhrer, H. Park.
    IEEE Transactions on Nanotechnology, Vol. 1,March 2002.
    [40] D. Mann, A. Javey, J. Kong, Q. Wang, and H. Dai, Nano Lett. 3, 1541 (2003).
    [41] J. Nygard, D. H. Cobden, M. Bockrath, P. L. McEuen, and P. E. Lindelof,
    “Electrical transport measurements on single-walled carbon nanotubes,”
    Appl. Phys. A, Solids Surf., vol. A69, pp. 297, (1999).
    [42] S. Tans, A.R.M. Verschueren, C. Dekker: Nature 393, 49 (1998).
    [43] S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris,
    Phys. Rev. Lett. 89, 106801.
    [44] S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris,
    Phys. Rev. Lett. 89, 106801 (2002).
    [45] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris,
    Appl. Phys.Lett. 73, 2447 (1998).
    [46] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. K. Chan, J. Terso®, and
    Ph. Avouris, Phys. Rev. Lett. 87, 256805 (2001).
    [47] V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, Nano Lett. 1, 453
    (2001).
    [48] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and Ph. Avouris,
    Appl.Phys. Lett. 80, 3817 (2002).
    [49] A. Javey, H. Kim, M. Brink, Q. Wang et al. Nature Materials 1, 241 (2002).
    [50] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. J. Dai, Nature 424, 654
    (2003).
    [51] J. Guo, S. Datta, M. Lundstrom, M.Brink, P. McEuen, A. Javey, H.Dai, H. Kim, P. McIntyre, IEDM 2002.
    [52] W. Hoenlein*, F. Kreupl, G.S. Duesberg, A.P. Graham, M. Liebau, R. Seidel, E. Unger, Materials Science and Engineering C 23 (2003) 663.
    [53] Building Carbon Nanotube Transistors
    http://www.research.ibm.com/resources/press/Transistors/

    第四章參考文獻
    [1] 莊鎮宇,國立清華大學 工程與系統科學系博士論文。(中華名國九十三年七月).
    [2] 莫堯安,國立清華大學 工程與系統科學系碩士論文初稿。(中華名國九十四年四月).
    [3] Y. Li, W. Kim, Y. Zhang, M. Rilandi, D. Wang, H. Dai,J. Phys. Chem. B 105 (2001) 11424.
    [4] S. Tang, Z. Zhong, Z. Xiong, L. Sun, L. Liu, J. Lin, Z.X. Shen, K.L. Tan, Chemical Physics Letters 350 (2001) 19.
    [5] J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Nature 395 (1998) 878.
    [6] R. Seidel, M. Liebau, G. Duesberg, F. Kreupl, E. Unger, A. P. Graham, And W. Hoenlein, Nanolett., vol. 3 (2003) 965.
    [7] A.R. Harutyunyan, B. Pradhan, U. Kim, G. Chen, P.Eklund, NanoLett. 2 (2002) 525.
    [8] A.M. Cassell, J.A. Raymarkers, J. Kong, H. Dai, J. Phys.Chem. B 103 (1999) 6484.
    [9] Ryuichiro Ohnishi, Shetian Liu, Qun Dong, LinshengWang, and Masaru Ichikawa, Journal of Catalysis 182 (1999)92.
    [10] F.A Lindemann, Z.Phys. 11, (1910)609.
    [11] Yoshikazu Homma,* Yoshiro Kobayashi, and Toshio Ogino, J. Phys. Chem. B 107 (2003) 12161.
    [12] A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter,T. McClure, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev.Lett. 86 (2001) 1118.
    [13] 材料分析 汪建民.
    [14] David R. Gaskell, “Introduction to the Thermodynamics of Materials“, 3nd, Taylor & Francis.
    [15] L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan, Chem. Phys. Lett. 348 (2001) 368.
    [16] Yoshikazu Homma, Takayuki Yamashita, Paul Finnie, Masato Tomita, and Toshio Ogino J.J.Appl.Phys. 41(2002)89.
    [17] H. Cui a, G. Eres , J.Y. Howe , A. Puretkzy , M. Varela ,D.B. Geohegan , D.H. Lowndes, Chem. Phys. Lett. 374 (2003) 222.
    [18] J.W. Ward , B.Q. Wei, P.M. Ajayan , Chem. Phys. Lett. 376 (2003) 717.
    [19] R. Seidel, M. Liebau, G. Duesberg, F. Kreupl, E. Unger, A. P. Graham, And W. Hoenlein, Nanolett., vol. 3 (2003) 965.
    [20] A.M. Cassell, J.A. Raymarkers, J. Kong, H. Dai, J. Phys.Chem. B 103 (1999) 6484.
    [21] S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393 (1998) 49.
    [22] Zhang Y, Chang A, Cao J, Wang Q, Kim W, Li Y, Moris N, Yenilmez E, Kong J and Dai H Appl. Phys. Lett. 79 (2001) 3155.
    [23] Ural A, Li Y and Dai H ,Appl. Phys. Lett. 81 (2001) 3464.
    [24] Masanori Otobe,Masao Kimura and Shunri Oda, Jpn.J.Appl.Phys. Vol.33 (1994) 4442.
    [25] K. Seeger and R. E. Palmer,Appl. Phys. Lett., Vol. 74, No. 11, 15 March 1999.
    [26] Chih-Hsun Hsu, Hung-Chun Lo, Chia-Fu Chen, Chien Ting Wu,
    and Kuei-Hsien Chen,Nano Lett., Vol. 4, No. 3, 2004,471.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE